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Abstract—Arm’s Memory Partitioning and Monitoring
(MPAM) extension introduces standardized mechanisms for par-
titioning cache and memory bandwidth. From a real-time systems
perspective, this can aid in improving predictability in hetero-
geneous MPSoCs. In this paper, we present the first practical
evaluation of MPAM on a COTS platform—the Radxa Orion O6
with the CIX CD8180 SoC. We characterize the SoC’s MPAM
capabilities and experimentally assess cache portion partitioning
and proportional stride memory bandwidth partitioning under
controlled interference. Our results show that enabling MPAM
features can reduce interference, but their behavior often diverges
from expectations based on the specification, with anomalous
effects observed across workloads and cores. These findings
highlight both the promise of predictability from MPAM for real-
time systems and the current challenges arising from optionality,
heterogeneity, and limited documentation. We conclude that
broader evaluation across future MPAM-enabled SoCs, aided by
detailed performance counter analysis, is essential to establish
MPAM’s practical value for real-time practitioners.

Index Terms—real-time system, multi-core, cache partitioning,
memory bandwidth partitioning, Arm, MPAM

I. INTRODUCTION AND MOTIVATION

Under real-time constraints, applications executing on het-
erogeneous MPSoCs suffer from a lack of predictability due
to contention on shared physical resources. Primary sources of
interference stem from simultaneous access to the cache and
memory subsystems from multiple cores. Several hardware-
and software-based approaches to mitigate these issues have
been proposed in the past [1]. Software-based techniques typ-
ically rely on performance counters to track memory activity
and throttle cores once a task exceeds its budget. This approach
is inherently indirect, incurs overhead from start—stop control
in software, and is constrained by the availability of suitable
counters [2]. On the other hand, hardware-based proposals
often require custom designs, making them impractical for
COTS platforms where the hardware is not reconfigurable [3].

To mitigate interference, chip manufacturers have intro-
duced hardware partitioning mechanisms, which can reduce
the complexity faced when trying to build predictable systems.
For example, Intel RDT [4] implements Cache Allocation
Technology to partition the LLC per core and Memory Band-
width Allocation to limit the memory bandwidth per core.
However, prior analyses [5] have shown that these mechanisms
do not always deliver consistent isolation in practice. More-
over, support for RDT remains limited to the Xeon family of
processors [6], primarily aiming at Quality-of-Service (QoS)
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levels for server workloads, rather than embedded or mixed-
criticality domains. In contrast, Arm introduced MPAM [7],
explicitly designed to provide cache and memory bandwidth
partitioning in a standardized manner. MPAM is increasingly
being integrated as a default capability in the latest Arm
cache controllers and interconnects. Given Arm’s dominance
in mobile, automotive, and embedded markets, this trend
suggests that MPAM will soon become widely available on
COTS heterogeneous MPSoCs. For real-time practitioners,
such widespread hardware support is crucial as it enables
predictable performance isolation directly at the hardware
level, enabling more robust and certifiable real-time systems.

In an MPAM-capable Arm system, memory requests are
managed by Memory-System Components (MSCs), such as
caches, TLBs, SMMUs, and DRAM controllers. Each MSC
can partition resource usage at the granularity of a task, using
the PARTID to distinguish between tasks. The PARTID is
configured via core-level MPAM system registers on Cortex-A
processors and must be set correctly by the OS on each task
switch. Depending on the partitioning scheme, each MSC can
be programmed to reserve a specific share of resources for
a given PARTID. From a Linux user perspective, software
controls for partitioning and monitoring of memory resources
will be supported in the mainline kernel with the resctrl in-
terface in sysfs (unified for both Intel RDT and Arm MPAM).

While MPAM promises a standardized way to control QoS
of memory requests on Arm platforms, its current specification
poses challenges for real-time use. First, many features are
declared as IMPLEMENTATION DEFINED, leaving practition-
ers uncertain since the same partitioning mechanism may
behave differently across SoCs. Zini et al. [8] discuss these
ambiguities and propose clarifications for system designers.
Second, many MPAM features are optional and might be
implemented only by some MSCs. Even worse, supported
MSCs may expose different partitioning schemes. Therefore,
mixed configurations are possible where, for example, the
DynamlIQ Shared Unit (DSU) might implement memory-
bandwidth portion partitioning, the interconnect may lack
MPAM entirely, and the DRAM controller may support mini-
mum and maximum partitioning. Such inconsistencies mandate
careful analysis of the predictability and end-to-end guarantees
that MPAM provides on each SoC.

In this paper, we present the first practical evaluation of
Arm’s MPAM partitioning features—focusing on cache and,
in particular, memory bandwidth partitioning. Our study builds
on the CIX CD8180 SoC hosted on the recent Radxa Orion



06 platform [9], which provides MPAM support in hardware.
We will describe the SoC and its MPAM capabilities, our
experiments, and key findings. Finally, we discuss implications
of MPAM for real-time systems and outline future directions.

II. SYSTEM DESCRIPTION

The CD8180 is an Armv9.2 SoC that integrates Cortex-
A520 cores [10], Cortex-A720 cores [11], and the latest DSU-
120 [12]. As a coherent interconnect between cores, caches,
and DRAM, it employs the CoreLink CI-700 [13]. The four
Cortex-A520 cores serve as the high-efficiency, low-power
little cores. Unlike their predecessors, such as the Cortex-AS5S,
these cores support only 64-bit execution. Each Cortex-A520
core includes 64KiB of L1 instruction and data caches, but
lacks a private L2 cache. Complementing them, the SoC also
features eight Cortex-A720 (four big and four medium) cores,
which similarly omit 32-bit execution support. Each Cortex-
AT720 core is equipped with 64KiB of L1 instruction and data
caches and a private 512KiB L2 cache. All twelve cores are
part of the same DSU cluster and share a unified 12-way,
12MiB L3 cache.

The DSU-120 implements MPAM-based mechanisms for
cache and memory bandwidth partitioning. For cache par-
titioning, the CD8180 supports Cache Portion Partitioning.
Although defined by the MPAM specification, this mechanism
is conceptually similar to the L3 way partitioning supported
by earlier DSUs on Armv8.2 SoCs [14]. It allows assignment
of L3 cache ways per PARTID with a granularity of two ways.
The SoC provides a 6-bit field, where each bit corresponds to
two cache ways that may be allocated to a specific PARTID.

For memory bandwidth partitioning, the DSU-120 supports
only the Proportional Stride Memory Bandwidth Partition-
ing method; other schemes such as MIN, MAX, or Portion
partitioning [7] are not available.! According to the MPAM
specification, proportional stride regulation is activated only
under contention, i.e., when two or more cores simultaneously
access the memory subsystem. Strides can be assigned in the
range 0-63 (6 bits), where 0 corresponds to the highest quality
of service and 63 to the lowest. Importantly, the scheme
applies regulation only when demand exceeds available band-
width; in the absence of contention, no throttling occurs. A
detailed description of the scheme is provided in the MPAM
component specification [7].

Although the CI-700 could support MPAM partitioning, in
contrast to the DSU-120, probing the CI-700 configuration
master registers on the CD8180 from the Cortex-A cores
does not reveal any MPAM features. The technical brief of
Radxa Orion O6 states that the board uses LPDDR5 DRAM.
However, since no public TRM is available for the CD8180
SoC, the details of the DRAM controller and whether it
supports MPAM remain unclear to us.

III. EXPERIMENTS AND EVALUATION

Since the resctrl interface for MPAM is not yet in the
mainline Linux kernel, we relied on the test drivers provided
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by Arm in the Radxa kernel repository for our evaluation.
These drivers consist of two main components: (a) routines
for identifying and configuring parameters of each MSC, and
(b) a sysfs interface to assign a PARTID to each task or
process PID. In their original form, the drivers supported
only cache portion partitioning. We extended them to add
functionality for configuring proportional stride values through
bitfields.2 In addition, we enabled the L3 DSU MSC in
the Linux device tree. With Radxa firmware version 0.3.1-1,
the modified drivers operated correctly without requiring any
further firmware changes.

To evaluate the effectiveness of MPAM Cache Partitioning
and Memory Bandwidth Partitioning in the DSU, we follow
an approach similar to [14] and [2], respectively. We use a
combination of real-world benchmarks (as evaluation target)
and synthetic benchmarks (as interference) to gain insights into
the behavior of the features. As the real-world benchmark, we
use San Diego Vision Benchmarks (SD-vBS) [15] under the
RT-Bench [16] wrapper. Specifically, we use the disparity and
mser tasks (identified as memory-intensive in [14]), together
with the large vga and fullhd image sizes to intentionally
generate heavy memory traffic. To generate worst-case access
patterns as interference, we use the memory benchmark tool
“bench” [17], previously used also in [2] [14] [18].

First, we evaluate the Cache Portion Partitioning feature
of the DSU-120. We measure the slowdown of sSD-VBS
workloads when they are executed alongside interfering access
patterns generated using bench. The SD-VBS runs on a
designated “Target Core” (7C), while synthetic interference
workloads run on the “Interference Cores” (1Cs). The access
type of bench is varied as read, modify, write, and prefetch.
prefetch uses the PRFM instruction to prefetch cachelines
into the L3 cache. read (write) repeatedly load (store) full
cachelines from memory. modify changes only a single byte
within a cacheline, which forces the core to first load the entire
line before an eventual write-back.

Compared to most of the platforms studied in [14], the
CDS8180 features a significantly faster memory subsystem.
As a result, a single IC executing bench is often unable to
saturate the available memory bandwidth, leading to minimal
or no observable slowdown on the TC running sp-vBs. To
ensure that the memory subsystem operates under sufficient
stress to reveal the effects of interference and partitioning,
we employ multiple 1Cs. Specifically, for evaluating Cache
Portion Partitioning, we consider two configurations: (1) one
Cortex-A520 7C executes SD-VBS, while the remaining three
Cortex-A520 1cs execute modify; (2) one Cortex-A720 1C
runs SD-VBS, while seven Cortex-A720 1Cs execute modify.

To sufficiently stress the system, the size of the interference
is varied in steps from 8KiB to 128MiB. The slowdown is
computed as the ratio of SD-VBS execution time on the TC
under interference to the execution time with no interference
in the same configuration. Fig. 1 shows the resulting slowdown
for two memory-intensive SD-VBS benchmarks, disparity/vga

2The drivers can be found at: https:/github.com/rtsl-cps-tum/kernel-radxa.
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Fig. 1: Cache portion partitioning on disparity/vga (a, c) mser/vga (b, d) benchmark running on A520 and A720 cores. Each
plot reports the execution slowdown w.r.t. the no-interference case with increasing size (KiB) of modify interference on three
AS520 cores (a, b) and seven A720 cores (c, d). L1, L2 (if applicable), and L3 sizes are marked. Note the different y-scale.

and mser/vga, under the effect of modify on the 1Cs. Since
the partitioning scheme is configured through a 6-bit field,
we plot the slowdown for each possible exclusive partitioning
between TC and ICs. A 5:1 partition assigns 5 bits (10
cache ways) to the 7C and 1 bit (2 cache ways) to the IcC.
Similarly, 4:2 allocates of 8 cache ways to 7C and 4 cache
ways to ICs, and so on.

We observe that Cache Portion Partitioning on the DSU-
120 behaves consistently with per-way L3 partitioning on
the DSU studied on the previous generation of Armv8.2
SoCs [14]. Partitioning significantly reduces slowdown from
interference, and larger cache portions for the 7¢ yield larger
performance gains. The improvement is more pronounced on
Cortex-A720 cores, where the slowdown for mser reduces
from 8x to 3x between the no partition and 5:1 cases.
On Cortex-A520 cores, we observe no significant slowdown
for disparity (maximum slowdown of 2.5%). However, for
mser, a 5:1 partition eliminates the 1.3x maximum slowdown
observed without partitioning. Compared to [14], however,
the slowdown begins much earlier due to memory controller
accesses. This follows from using multiple 1Cs, which shrinks
the effective cache space per core in an already partitioned L3,
forcing higher main memory accesses.

Before evaluating memory partitioning on the DSU-120,
we first characterized the memory subsystem by measuring
its sustainable memory bandwidth, defined as the maximum
bandwidth that the controller can maintain under worst-case
access patterns [18]. To measure this, a large buffer is accessed
with varying cacheline strides for read, modify, and write, trig-
gering worst-case DRAM patterns. The SoC behavior closely
matches the RK3588 studied in [2], though the CD8180 is
faster, making its bandwidth a scaled and shifted version of
the RK3588. A single Cortex-A520 core exhibits a worst-
case modify bandwidth of ~900MB/s around a 512KiB step.
Similarly, on a single Cortex-A720 core, we observe the
worst-case memory bandwidth of ~1400MB/s at the step-size
of 8MiB. Overall, CD8180 sustains ~3800MB/s when all cores
execute modify with 1MiB stride.

With the sustainable bandwidth in place, we evaluate the
proportional stride memory bandwidth partitioning feature of
the DSU-120. This feature is controlled via a 6-bit stride field
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Fig. 2: Effect of increasing proportional stride on ICs. In-
terference is caused by seven A720 cores executing read,
modify, write, and prefetch. Plots report slowdown of mser/vga
compared to no-interference. Dotted lines show the slowdown
without enabling memory bandwidth proportional partitioning.

(Sec. II), where higher stride values are intended to reduce
the quality of service. We reuse the same setup as in the
cache portion partitioning experiments. One Cortex-A520 TC
executes SD-VBS, while seven Cortex-A720 ICs run read,
modify, write, and prefetch in separate experiment runs, with
an access size of 128MiB. Using multiple Cortex-A720 1Cs
creates heavy pressure on the memory subsystem. To eliminate
cache-level interference, we fix the L3 partitioning at 3:3.
We then vary the proportional stride of the 7¢s from O to 63,
keeping the TC at stride 0. The goal is to measure the degree of
isolation achieved by a real-time task on the TC. We repeat the
same procedure with one Cortex-A720 TC running SD-VBS.

Fig. 2 presents the slowdown as the 1cCs’ stride in-
creases. The reference dotted lines indicate the baseline
configuration—with 3:3 cache portion partitioning, but pro-
portional stride memory bandwidth partitioning disabled
(enable bit set to 0). We observe that simply enabling the
feature substantially reduces the slowdown. However, increas-
ing the stride beyond zero has almost no additional effect. This
outcome contrasts with the specification, but may be explained
by bench running on multiple cores saturating the DRAM
bandwidth, rendering stride variations ineffective.

To analyze this further, we reversed the experiment: instead
of varying on the ICs, we vary the proportional stride of the
7c. To ensure the target generates heavy DRAM traffic, we
execute modify on it, which serves as a realistic proxy for
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Fig. 4: Effect of increasing proportional stride on TC. Interfer-
ence is caused by seven A720 cores executing read, modify,
write, and prefetch. Plots report slowdown of mser/fullhd
compared to no-interference.

memory-intensive workloads. Cache partitioning is again fixed
at 3: 3, and all cores use a buffer size of 128MiB. Fig. 3 shows
the average DRAM bandwidth of the TC under interference
from seven Cortex-A720 cores. Here, increasing the stride
reduces the TC’s bandwidth in nearly all cases, with severe
drops under modify and write interference. Unexpectedly,
when the 7C is a Cortex-A520 core under read interference,
bandwidth almost doubles as the stride increases.

We further investigate this anomaly with a slightly modified
setup. On TC, instead of modify, we run the mser benchmark
with a larger input size of fullhd, maximizing the memory
pressure. Fig. 4 shows the resulting slowdown relative to
execution without interference, for both Cortex-A520 and
Cortex-A720 7Cs. In this case, read no longer speeds up
the Cortex-A520, though the slowdown it causes remains
smaller than with modify and write (as high as 16x on Cortex-
AS520 or even 100x on Cortex-A720 cores). Taken together,
these results provide inconclusive evidence regarding the true
effect of proportional strides. The unexpected speed-up could
stem from the lack of MPAM support in the interconnect
or artifacts of our methodology. A definitive answer would
require more information from the SoC TRM or extensive
reverse engineering with core and DSU performance counters,
which we leave for future work.

IV. CONCLUSION AND FUTURE WORK

In this work, we presented the first practical evaluation
of Arm’s MPAM cache- and bandwidth-partitioning features
on the Radxa Orion 06 (CIX CD8180 SoC), highlighting
their potential and current limitations for real-time systems.

On the one hand, DSU-120’s cache portion partitioning and
proportional stride memory bandwidth partitioning can reduce
interference and improve isolation across cores. On the other
hand, our experiments revealed unexpected behaviors, such
as negligible benefit from increasing stride values and even
anomalous bandwidth increases under certain interference
patterns. These results show the complexity practitioners face
when relying on MPAM in the absence of detailed documen-
tation and consistent feature support across MSCs.

Looking forward, the dependence of MPAM behavior on
SoC specifics calls for access to a broader range of platforms to
enable systematic validation of the specification. Limited doc-
umentation and the optional, heterogeneous nature of MPAM
implementations mean that results may differ significantly
across future designs. Future work will focus on analyzing
these behaviors using core- and DSU-level performance coun-
ters to better understand interactions between MPAM and the
memory subsystem. Ultimately, a clearer picture of MPAM’s
role in real-time systems will only emerge as more SoCs adopt
the extension and enable comprehensive experimental studies.
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