
Work-in-Progress: Toward Real-Time Cross-ISA
Execution on the AMD Embedded+ Architecture
Lukas Neef∗, Daniele Ottaviano∗, Denis Hoornaert∗, Alexander Zuepke∗†, Marco Caccamo∗, Andrea Bastoni∗†

∗Technical University of Munich, †Minerva Systems
{lukas.neef, daniele.ottaviano, denis.hoornaert, alex.zuepke, mcaccamo, andrea.bastoni}@tum.de

Abstract—Emerging embedded platforms increasingly rely on
heterogeneous processing units to address diverse performance
and energy requirements. The recently introduced AMD Em-
bedded+ architecture reflects this trend by interconnecting via
PCIe on the same motherboard one AMD x86 host processor
with one Arm AArch64+FPGA complex. This implementation is
another step forward towards a more compact heterogeneous-
ISA platform designed with embedded applications in mind.
While cross-ISA execution has been explored in the past with
a focus on performance, programmability, and energy efficiency,
its potential for embedded and predictable real-time workloads
remains largely unexplored. In this paper, we start exploring
such potential by investigating the real-time capabilities of
the first commercial platform based on the AMD Embedded+
architecture: the Sapphire Edge+. We (1) outline key research
challenges and real-time use-cases, (2) discuss suitable software
architectures for the use-cases and highlight associated trade-offs,
and (3) report an initial assessment of the potential of such
architectures and use-cases via an experimental evaluation of
latency and bandwidth on the real hardware.

Index Terms—real-time system, heterogeneous architectures,
cross-ISA execution, multi-core, virtualization

I. INTRODUCTION

Prompted by an increasing demand for efficient computing
systems, heterogeneous computing has become an ubiquitous
design principle in embedded and cyber-physical systems. In
fact, modern platforms combine general-purpose CPU cores,
microcontroller-class CPUs, and specialized accelerators such
as GPUs, NPUs, or FPGAs. Programming such systems is
challenging due to the diverse nature of the processing units
composing them. In fact, each unit can have partially over-
lapping or completely disjoint instruction set architectures
(ISAs). In the current computing landscape, the combination of
x86-based and Arm AArch64-based processors is an obvious
target for manufacturers and system integrators due to their
respective focus on raw performance and power efficiency.

Co-designing for such systems creates opportunities for
flexible, energy-aware execution, but also raises challenges in
programmability, scheduling, and predictability. Over the past
decade, a sizeable amount of research has sought to address
these challenges through cross-ISA execution. Projects such
as Popcorn Linux [1], HEXO [2], and Stramash [3] have
demonstrated the benefits of mechanisms such as process mi-
gration, VM portability, and cache-coherent execution across
different ISAs. Yet, these works focus on power-hungry server-
class platforms (interconnected via PCIe [1] or Ethernet [2])

Marco Caccamo was supported by an Alexander von Humboldt Professor-
ship endowed by the German Federal Ministry of Education and Research.

found in cloud infrastructures and optimized exclusively for
programmability and throughput.

The recent release of the AMD Embedded+ architecture [4]
provides the opportunity to revisit the above mentioned chal-
lenges from an embedded real-time perspective. The Sapphire
Edge+ VPR-4616-MB [5], the first COTS platform based on
the Embedded+ architecture, integrates an x86-based AMD
Ryzen Embedded CPU and an Arm AArch64-based Versal
FPGA+CPU complex on a single motherboard through on-
board PCIe (see Fig. 1). It stands out in two ways. First, unlike
prior cross-ISA x86–AArch64 platforms limited to datacenter-
class systems, it directly addresses size, weight, and power
(SWaP) constrained use cases via a compact and low-power
embedded form factor. Second, unlike earlier embedded boards
that pair x86 with microcontroller-class CPUs (e.g., 32-bit
Arm Cortex-M/R and RISC-V), it features fully fledged 64-bit
application cores (Cortex-A72) that can host OS/hypervisors
and run complex workloads in parallel with accelerators. These
qualities make the Embedded+ architecture a perfect fit for
mixed-criticality systems such as those found in, e.g., auto-
motive or industrial domains.

In the default configuration, the x86 subsystem acts as the
host while the Versal is essentially exposed as a subordinate
accelerator connected as PCIe device, with the Arm cores
supporting auxiliary functions. However, we argue that treating
both subsystems as first-class computing elements—capable
of hosting real-time workloads, supporting task migration,
and coordinating accelerator utilization—would help improve
system predictability and energy efficiency. This view is also
reflected in recent shifts in the, e.g., safety-critical automotive
domain, where heterogeneous-ISAs have been highlighted as a
promising enabler to consolidate mixed-criticality workloads,
while preserving real-time isolation [6].

Heterogeneous-ISA platforms such as the Embedded+ offer
a timely opportunity for the real-time systems community
to explore suitable execution models. However, they raise
questions on system practicality, including bounded migration
latency, deterministic accelerator scheduling, and predictable
resource isolation. We make three early contributions:

• A framing of the real-time research challenges introduced
by cross-ISA platforms in an embedded form factor.

• An overview of suitable software architectures for cross-
ISA execution in embedded contexts and their trade-offs.

• Preliminary microbenchmarks of the PCIe connection on
the Edge+ quantifying communication bandwidth and
latency characteristics relevant to process migration.



II. RELATED WORKS

Multikernel Operating Systems. Multikernels run multiple
OS kernel instances per core or groups of cores [7], and enable
process and thread migration even across heterogeneous ISAs.

Popcorn Linux [1] provides a replicated-kernel OS and
a software distributed shared memory (DSM) abstraction
for servers connected via off-chip, board-to-board intercon-
nects such as PCIe. It dynamically migrates execution to
optimize performance without requiring application source
code changes. DAPPER [8] introduces live process rewriting
for low-latency cross-ISA migration, emphasizing security
through randomized program state. Stramash [3] follows the
direction of emerging CXL-based server interconnects and
extends the idea of Popcorn by implementing, via full-system
emulation, a cache-coherent shared memory across ISAs
aimed at reducing message-passing overhead and improving
synchronization. However, real-time predictability and isola-
tion guarantees are not the primary concern in both cases.

Virtual Machine and Container Migration. Virtual machine
(VM) and container migration have also been investigated as
mechanisms to consolidate workloads and improve utilization
in heterogeneous environments. HEXO [2] achieves semantic
unikernel (see e.g., [9]) VM migration between server-class
and embedded Arm boards, typically networked via Ether-
net, using lightweight unikernels and memory disaggregation
to overcome resource constraints. H-Container [10] enables
server-to-edge container migration to heterogeneous ISAs with
minimal runtime overhead by transforming checkpoints and
recompiling binaries across ISAs without kernel or hypervisor
modifications. These systems demonstrate flexible migration
of stateful applications, but do not provide or evaluate the
bounded worst-case latencies required by real-time workloads.

Existing approaches focus on throughput, average migration
overhead, and ease of programming, often assuming data-
center setups interconnected via Ethernet or PCIe. In these
works, real-time properties (e.g., bounded communication la-
tency, deterministic scheduling, and mixed-criticality isolation)
remain unexplored.

The AMD Embedded+ enables the evaluation of
heterogeneous-ISA architectures for real-time use cases.

III. AMD EMBEDDED+ ON SAPPHIRE EDGE+

Our evaluation platform is the Edge+ [5]. It integrates an
AMD Ryzen Embedded SoC (x86 host) and a Versal VE2302
Adaptive SoC (AArch64+FPGA device), interconnected via a
four-lane PCIe Gen3 link (up to 4 GB/s). As shown in Fig. 1,
both SoCs can run a full software stack (OS and hypervisor)
and exchange data over UART, I2C, and predominantly PCIe.
Versal’s accesses are mediated by the AMD PCI Express Multi
Queue DMA (QDMA) engine, implemented in programmable
logic, which translates PCIe transactions (TLPs) into AXI and
supports two modes: a lightweight bridge for control/config-
uration and a high-throughput DMA mode. In DMA mode,
multiple queues, descriptor rings, and interrupts enable effi-
cient bulk transfers with minimal CPU overhead. The QDMA

z

x86-side Versal-side

I/O

PCIe Gen3

I2C

UART
Hypervisor

App

DDR Memory LPDDR Memory

x86 Cores Aarch64 Cores

FPGAQDMA

C CC
C C

C CC
CC

QDMA-drv

Hypervisor

OS

I/O

OS

AppApp AppAppApp

Fig. 1: Architectural view of the Embedded+ platform, show-
ing the x86 host, the Versal device (AArch64 + FPGA), and
PCIe/QDMA as the main communication channel.

is attached to the Versal’s programmable Network-on-Chip
(NoC), allowing DMA requests to target memory-mapped
resources such as LPDDR or AI engines. For data transfers,
it fetches descriptors from the host’s descriptor rings and
issues corresponding read or write requests on the PCIe link.
The AMD-provided QDMA-IP driver sets up rings, configures
queues, and allocates message-based interrupts (MSI/MSI-X)
vectors for completion signaling to the host.

IV. CROSS-ISA REAL-TIME USE-CASE SCENARIOS

The tight and low-power integration enables new execution
models where workloads are dynamically managed across the
x86 and Versal-side. We outline two use-cases (UC).
(UC1) energy-efficient task migration: By migrating work-
loads between high-performance processors and low-power,
energy-efficient cores, systems can optimize energy consump-
tion without compromising responsiveness [11]. For exam-
ple, in UAVs, compute-intensive sensor fusion and control
tasks during takeoff and landing may execute on the pow-
erful cores, while during steady-state flight, the workloads
can migrate to energy-efficient cores to prolong battery life.
Real-time feasibility requires bounded migration latency, pre-
dictable interconnect transfers without unbounded blocking
or jitter, and schedulability analyses that account for core-
dependent WCETs, as previously explored on same-ISA Arm
big.LITTLE platforms [11], [12].
(UC2) accelerator sharing across ISAs: FPGA and hardware
accelerators can be dynamically reallocated between x86 and
Versal domains. For example, in safety-critical automotive set-
tings, high-priority inference workloads might use accelerators
on both domains, with PCIe/DMA arbitration enforcing isola-
tion across mixed-criticality tasks. The bandwidth experienced
by the x86 (Versal) domains during data transfers to/from the
other domain is a critical factor to characterize the overall
real-time guarantees.

V. CROSS-ISA SW ARCHITECTURES FOR REAL-TIME

Different system software models can realize these scenar-
ios, each with distinct trade-offs.



(a) x86-to-Versal traffic (write) (b) Versal-to-x86 traffic (read)

Fig. 2: Throughput measurements on the Edge+. Each curve reports transfer rates for packet sizes between 64 Bi and 64 KiB
under different numbers of concurrent DMA transactions, showing the scaling behavior of the PCIe link in both directions.

Partitioning with OpenAMP. The most straightforward ap-
proach runs independent OS instances on each side, com-
municating via open-source standardized frameworks such as
OpenAMP (Open Asymmetric Multi-Processing). This setup
preserves simplicity and modularity, but task migration (UC1)
and accelerator sharing (UC2) must be implemented via ad-
hoc middleware in user space, as no OS-level migration is
available. This hinders automation and real-time guarantees.

Heterogeneous-ISA Hypervisor with VM Migration. One
hypervisor spanning multiple ISAs, as suggested by Omnivi-
sor [13] and recent Xen vision by AMD [6], can enforce
isolation while supporting VM migration. This enables dy-
namic migration of workloads (UC1) and sharing accelerators
via e.g., VirtIO [14] and DSM [15] (UC2). However, such
architectures are ill-suited for real-time analysis, as bounding
the latency of VM migrations and the interference caused by
VirtIO-based resource sharing is challenging.

Multikernel OS with Cross-ISA Migration. A multikernel
OS (e.g., [1]) supports fine-grained process migration across
ISAs, maximizing flexibility and resource utilization. Such
systems typically rely on a DSM to maintain a consistent
address space across nodes, enabling transparent cross-core
memory access. This approach offers transparent accelerator
sharing (UC2) and dynamic load balancing (UC1), but in-
creases system complexity complicating real-time evaluations.

VI. PRELIMINARY EXPERIMENTS

We argue that hypervisor- and multikernel-based designs
have greater potential for efficiently supporting real-time
workloads on embedded heterogeneous-ISA architectures. In
this work, we start exploring their trade-offs by focusing
on interconnect performance, which is critical for both VM
migration and distributed shared memory (DSM) synchroniza-
tion (key aspects of hypervisor and multikernel architectures,
respectively). Specifically, we measure the achievable PCIe
throughput relative to local memory bandwidth on both sides
to assess the overhead introduced by a DSM abstraction, and
we evaluate transfer latency across varying data sizes, which
directly impacts the migration time of a VM of comparable
size. To this end, we set up QDMA and NoC such that data
traffic targets the local LPDDR on the Versal (FPGA clocked at
250 MHz). On the x86-side, we run Ubuntu 22.04 LTS (Linux

6.8), configured with the performance scaling governor and
2 MiB huge pages enabled, and on the Versal-side Petalinux
v2024.1 (Linux 6.6.10). PCIe communication relies on AMD’s
open-source QDMA driver (v2024.2). We devise two classes
of micro-benchmarks to characterize the Edge+ interconnect:
(1) the maximum channel throughput of the PCIe Gen3 x4 link
and (2) the fundamental transfer latency of memory blocks.

A. Channel Throughput

Using dma-perf (an AMD utility to measure DMA
performance), we measure data transfer rates between the
x86 and Versal subsystems. Fig. 2 shows that throughput
scales with packet size and number of outstanding DMA
transactions before saturating near 3.3 GB/s in both direc-
tions. This corresponds to about 82% of the PCIe Gen3 x4
theoretical peak throughput (4 GB/s), with the remaining gap
largely explained by 128b/130b encoding overhead and per-
descriptor processing overheads in the QDMA engine. The
symmetric results suggest that the bottleneck lies in descriptor
management rather than link direction. We plan to further
investigate these overhead sources in future work.

To compare PCIe performance with local memory access,
we also measured the bandwidth that x86 and Versal-side can
achieve locally. We employed the same memory benchmark
used in prior works [16] to analyze DRAM behavior. We set
up the benchmark to access a 256 MiB buffer mapped as huge
pages. Each iteration performs a modify operation that updates
part of a cache line, forcing a read-modify-write sequence.
Results show that, on average, an x86 core reaches about 10
GB/s on its local DDR memory, while a Cortex-A72 core on
the Versal-side attains roughly 3 GB/s on LPDDR.

B. Transfer Latency

To evaluate the cost of migrating memory across ISAs, we
measured the transfer time for different buffer sizes, from a
4 KiB page (i.e., fine-grained memory migration) to 64 MiB
(i.e., VM state migration). To reduce the overhead of the OS,
which is not the main focus of this experiment, we executed
the transfers in a hot loop with 1024 iterations. Huge pages
(2 MiB) are enabled on the x86-side to allocate physically con-
tiguous and DMA-capable buffers. A closer inspection of the
QDMA driver reveals that even when hugepage-backed buffers



(a) x86 DDR to Versal’s LPDDR (b) Versal’s LPDDR to x86 DDR

Fig. 3: Blocking transfer time across increasing payload sizes (4 KiB to 64 MiB) for default and patched QDMA drivers.

are physically contiguous, it splits them into 4 KiB chunks,
each associated with an individual descriptor. This forces the
engine to fetch and process thousands of descriptors for large
transfers, introducing substantial overhead. To quantify such
overhead, we repeated the experiment with a patched driver
forcing one descriptor for each huge page.

Figs. 3a and 3b show the measured blocking transfer times,
plotted on a logarithmic scale, for both driver configurations.
For payloads smaller than 64 KiB, the system does not reach
the peak bandwidth observed in the throughput benchmarks,
as fixed costs from driver setup, descriptor posting, and DMA
transaction initiation dominate total latency. As the transfer
size grows, these fixed overheads are amortized, and the
effective bandwidth approaches the one reported earlier. The
“patched” driver lowers the end-to-end transfer latency, likely
thanks to the reduced descriptor count with one descriptor
for every 2 MiB huge page instead of one per 4 KiB page,
achieving an improvement of around 20% on average.

VII. DISCUSSION AND FUTURE WORK

The presented early results indicate that the next generation
of heterogeneous-ISA platforms, such as the Edge+, narrows
the performance gap that previously made cross-ISA migration
impractical on embedded systems.

From a migration perspective, prior works on VM mi-
gration on embedded platforms relied on Ethernet links and
required several seconds to transfer tens of MiBs [2], mak-
ing the approach useful for energy efficiency but unsuitable
for latency-sensitive scenarios. On the Edge+, a 64 MiB
transfer completes within tens of milliseconds over PCIe,
reducing migration cost by orders of magnitude. This opens
the possibility of revisiting cross-ISA migration as a practical
mechanism to improve the energy efficiency of real-time
systems, provided that residual overheads can be bounded
and analyzed. Promisingly, our latency results are comparable
to those obtained on same-ISA architectures, which have
previously been modeled to exhibit bounded I/O virtualization
and inter-VM communication [14].

Furthermore, we observed that the PCIe throughput
(3.3 GB/s) is comparable to the average memory bandwidth
achieved locally by the Versal-side (3 GB/s), even though it
remains below the 10 GB/s measured on the x86 side. These
results indicate that a DSM abstraction between x86 and Versal

domains could be implemented without excessive performance
loss. However, since DSM is not hardware cache-coherent,
explicit synchronization and consistency management would
incur additional costs that must be modeled for real-time use.

Finally, it is important to consider that the Edge+ rep-
resents only the first implementation of the AMD Embed-
ded+ architecture. The current PCIe Gen3 ×4 interconnect is
constrained by the Ryzen Embedded processor’s limited 16-
lane configuration, which is shared with NVMe and other
peripherals. Future Embedded+ variants might scale to ×8
or ×16 links, potentially doubling or quadrupling available
bandwidth. Such improvements would further strengthen the
practicality of cross-ISA migration and DSM-based communi-
cation. Future work will focus on implementing and comparing
these mechanisms within representative real-time workloads to
evaluate their predictability and energy-efficiency benefits.

REFERENCES

[1] A. Barbalace et al., “Breaking the boundaries in heterogeneous-ISA
datacenters,” in ASPLOS, 2017.

[2] P. Olivier et al., “HEXO: offloading long-running compute- and
memory-intensive workloads on low-cost, low-power embedded sys-
tems,” IEEE Trans. Cloud Comput., vol. 12, no. 4, 2024.

[3] T. Xing et al., “Stramash: A fused-kernel operating system for cache-
coherent, heterogeneous-isa platforms,” in ASPLOS, 2025.

[4] AMD, “AMD Embedded+ Architecture,” https://www.amd.com/en/
products/embedded/embedded-plus.html.

[5] SAPPHIRE, “EDGE+ VPR-4616-MB,” https://www.sapphiretech.com/
en/commercial/edge-plus-vpr 4616.

[6] S. Stabellini, “OSS 2025 Talk: The Xen Safety Concept, a Major Mile-
stone Toward Certification,” https://ossna2025.sched.com/event/1zfmK.

[7] A. Baumann et al., “The multikernel: a new OS architecture for scalable
multicore systems,” in SOSP, 2009.

[8] A. Bapat et al., “Dapper: A lightweight and extensible framework for
live program state rewriting,” in ICDCS, 2024.

[9] S. Kuenzer et al., “Unikraft: fast, specialized unikernels the easy way,”
in EuroSys, 2021.

[10] T. Xing et al., “H-container: Enabling heterogeneous-ISA container
migration in edge computing,” ACM TOCS, vol. 39, no. 1-4, 2021.

[11] Y. Ma et al., “Online Resource Management for Improving Reliability
of Real-Time Systems on ”Big-Little” Type MPSoCs,” TCAD, 2020.

[12] A. Mascitti et al., “Dynamic Partitioned Scheduling of Real-Time DAG
Tasks on ARM big.LITTLE Architectures,” in RTNS, 2021.

[13] D. Ottaviano et al., “The Omnivisor: A real-time static partitioning hy-
pervisor extension for heterogeneous core virtualization over MPSoCs,”
in ECRTS, 2024.

[14] D. Casini et al., “Latency analysis of I/O virtualization techniques in
hypervisor-based real-time systems,” in RTAS, 2021.

[15] H. Chuang et al., “Aggregate VM: why reduce or evict VM’s resources
when you can borrow them from other nodes?” in EuroSys, 2023.

[16] A. Pradhan et al., “Predictable Memory Bandwidth Regulation for
DynamIQ Arm Systems,” in RTCSA, 2025.

https://www.amd.com/en/products/embedded/embedded-plus.html
https://www.amd.com/en/products/embedded/embedded-plus.html
https://www.sapphiretech.com/en/commercial/edge-plus-vpr_4616
https://www.sapphiretech.com/en/commercial/edge-plus-vpr_4616
https://ossna2025.sched.com/event/1zfmK

	Introduction
	Related Works
	AMD Embedded+ on Sapphire Edge+
	Cross-ISA Real-Time Use-Case Scenarios
	Cross-ISA SW Architectures for Real-Time
	Preliminary Experiments
	Channel Throughput
	Transfer Latency

	Discussion and Future Work
	References

