
Safe and Cooperative Coexistence of a SoftPLC and Linux

Robert Kaiser, Stephan Wagner And Alexander Zuepke
SYSGO AG

Am Pfaffenstein 14, D-55270 Klein-Winternheim, Germany
{rob,swa,azu}@sysgo.com

Abstract

Combining Linux and a softPLC in a single system stands to reason: Linux offers many facilities
that modern PLCs are expected to support. However, existing Linux-based softPLC implementations
so far have always placed the PLC ”on top” of the Linux kernel, so its functional reliability depends
on the correctness of the kernel. Due to its size, the Linux kernel can not be exhaustively validated or
even proven correct. This has hampered applicability of the concept to safety-critical PLC systems. The
approach described in this paper puts Linux and a softPLC ”side by side” on top of a small microkernel,
thus the two subsystems can coexist safely without being forced to depend on each other. In this way, the
trusted code base of the PLC is reduced by several orders of magnitude, thereby enabling its certification
according to applicable standards for safety-critical systems.

1 Introduction

Programmable logic controllers (PLCs) are the back-
bone of today’s automation industry. Invented in the
late 1960’s [16], they have gradually evolved from a
replacement for hard-wired relay circuitry to com-
plex systems which are nowadays often expected to
offer features such as a graphical user interface or in-
ternet connectivity. These features (and a lot more)
are readily available from a general purpose oper-
ating system such as Linux, so the idea of combin-
ing Linux and a software-based PLC implementation
(softPLC ) in a single machine stands to reason.

However, PLCs are also frequently used in safety-
critical applications. A malfunction in such a system
could cause significant damage or even death or in-
jury of human beings, so these systems have be to
far more reliable than the average workstation com-
puter. This reliability has to be proven prior to de-
ployment by means of testing or even formal verifi-
cation. While the standardised PLC programming
languages ([10]) lend themselves to such exhaustive
testing or validation, the same can not be said about
the platform executing the code (i.e. the softPLC).
Thoroughly testing such a platform is a costly task
and the cost increases proportionally to the amount
of code that needs to be examined. This ”trusted
code base” of the softPLC comprises all code that
has the potential of affecting its correct function. If
Linux is used as a base to support a softPLC, this

amount of code increases by roughly one million lines
(the code size of the Linux kernel), making a thor-
ough validation or verification quite infeasible.

This paper introduces a way to enable safe and
cooperative coexistence of a softPLC and Linux in
the same machine. Unlike previous approaches,
Linux is not used as a base for the PLC, rather,
both Linux and a PLC exist side by side, based on
a minimal amount of commonly trusted code. Our
approach avoids dependencies between the two com-
ponents that would otherwise require one of them
to trust in the other’s well-behaving. We first look
at some existing Linux-based softPLC implemen-
tations, analysing their dependency paths. Subse-
quently, we present our approach (which is based on
a microkernel), and finally, we show some initial re-
sults of an ongoing project which applies the pre-
sented approach. This project is aimed at integrat-
ing Linux and the well-known softPLC ”CoDeSys”
into a single system.

2 Existing Linux-based soft-
PLCs

Technically, a softPLC is a program that executes
specialised code, much like a Java virtual machine
(JVM), however, unlike a JVM, a PLC needs to ex-
ecute its code in a timely fashion. Therefore, any

1



softPLC needs its underlying operating system to
guarantee real-time execution. Standard Linux can
do this only to a limited extent, so, Linux-based soft-
PLCs up to now have either used one of the various
real-time kernel extensions, to provide ”proper” real-
time support for the PLC, or they have settled for
the Linux kernel’s limited real-time performance.

2.1 softPLCs based on Linux Real-
Time Kernel Extensions

Real-time extensions to the Linux kernel such as
RTAI [15] or RTLinux [2], work by integrating a dedi-
cated real-time programming interface into the Linux
kernel. There is only a formal separation between
this interface and Linux in that real-time code is not
supposed to invoke functions from the Linux kernel,
but there is no way to enforce this rule: technically,
any real-time application is able to invoke any Linux
kernel function (which, in most cases, will lead to
undefined behaviour). All real-time activities, and
thus, in our case, the softPLC, run as privileged code
in the same address space as the Linux kernel. Both
Linux and the softPLC have uncontrolled access to
the same code, data and I/O ports: they are not
spatially separated.

The real-time scheduler runs Linux as its low-
est priority process, thus, Linux only gets to execute
when none of the real-time processes are ready. This
means that for access to computation time, Linux
is at the softPLC’s mercy: if the PLC never blocks,
Linux will not execute. So, in addition to the spatial
dependency, Linux also depends on the softPLC tem-
porally (but not vice versa): they are not temporally
separated.

While the Linux kernel is able to affect the PLC,
Linux application programs are not, unless they run
with root privileges. So, assuming we can rule out
any security holes (e.g. root exploits) from the Linux
kernel, the softPLC need not trust Linux applica-
tions. Therefore, the trusted code base in this con-
figuration comprises the Linux kernel and the soft-
PLC.

2.2 User Space softPLCs

The plain, unmodified Linux kernel already comes
with some facilities that allow for limited real-time
functionality. If a softPLC application can accept de-
viations of timing in the range of a few milliseconds,
it can be implemented as a Linux user process[18] 1.
Also, some of the above mentioned Linux real-time
kernel extensions offer optional support to make the

real-time interface accessible to user-space programs
(e.g. LXRT [5]). This could also be used to im-
plement a softPLC in user space, without having to
make concessions regarding real-time performance.

With both approaches, the Linux kernel and the
softPLC do not share the same address space and
the PLC can not easily compromise the Linux ker-
nel. Conversely, however, the PLC does depend on
Linux making memory and I/O resources available
to it as required, so, the two components are still
not spatially separated.

Regarding temporal separation, if the PLC exists
as a standard Linux user process, it needs to receive
its allocation of computing time from the Linux ker-
nel, while, if a real-time extension is used from user
space, Linux again only gets to execute when all real-
time processes are blocked. So, with both methods,
there is no temporal separation: either the softPLC
is at the Linux kernel’s mercy, or vice versa.

Again, the total amount of trusted code, i.e. code
which is needed to establish the softPLC’s function-
ality, includes both the Linux kernel and the soft-
PLC’s code.

3 Approach: Separation of Re-
sources

In both approaches mentioned above, the Linux ker-
nel is in control of the spatial and -except for the
LXRT case- also the temporal resources of the sys-
tem. The softPLC crucially depends on this kernel:
it must assume its entire correctness. Given the ker-
nel’s sheer size, this assumption is not very likely to
be met, and auditing the trusted code base accord-
ing to standards such as [9] is not feasible. Hence,
such systems can not be used in safety-critical appli-
cations.

However, looking at a typical softPLC implemen-
tation, it turns out that only a very small part of
the kernel’s functionality is actually required to sup-
port it: All it really needs is a basic run-time envi-
ronment, i.e. access to memory, I/O and processing
time. Many of the advanced features that the Linux
kernel has to offer are not required by the PLC. Nev-
ertheless, since these features are implemented in the
kernel, the corresponding code has to be trusted.

In order to reduce the amount of trusted code,
our approach only implements those functions at the
kernel level that are either technically impossible to
do otherwise (i.e. require privileged instructions) or

1However, it should be noted that the timing deviations cited in [18] have been obtained by experimenting. Such experiments
can only yield an observed worst case value, not the worst conceivable value. A safety-critical system must not assume that this
value can never be exceeded.

2



that are needed to establish a secure runtime envi-
ronment for user level programs. All other function-
ality that classical monolithic kernels like Linux tend
to do in privileged mode can just as well be done
by user level programs. A kernel that is designed
according to these paradigms is usually referred to
as a ”microkernel”[12]. Such a microkernel provides
only basic mechanisms which allow to divide a sys-
tem’s temporal and spatial resources into individual
subsets. These subsets can also be regarded as vir-
tual machines2, each of which can host a complete
operating system such as Linux along with all of
its applications. Unlike RTAI or RTLinux, this ap-
proach in principle allows for any number of virtual
machines to exist in a single machine, i.e. we can
have more than one softPLC running independently
in one machine. Any code running inside a virtual
machine must run in user mode. Hence, an operat-
ing system will in most cases need some adaption.
User-space applications, however, need not even be
aware of the difference. Since it is confined to its
own set of resources, an operating system running
inside a virtual machine can not affect another op-
erating system running in another virtual machine.
The system is divided into partitions, which are com-
pletely independent of each other. Applying this to
the case of a softPLC in combination with Linux, we
can assign each of them to a different partition and
thus be sure that they are independent of each other:
the softPLC is no longer required to trust Linux and
vice versa (See figure 1). Both subsystems coexist
side by side (as opposed to one on top of the other).
Both share a common trusted code base consisting of
the microkernel itself (the only software component
that runs in privileged mode) and a ”System Soft-
ware” Layer, a software module which runs in user
mode, on top of the microkernel. The latter imple-
ments the policies for managing the partitions, based
on the mechanisms provided by the microkernel.

Linux soft-PLC

System Software
PikeOS µ-Kernel Kernel

Mode

User 
Mode

Trusted

Un-
trusted

Time:   40%
Mem;   80%
KMem: 90%

Time:   60%
Mem;   20%
KMem: 10%

FIGURE 1: Partitioned system

In the following subsections, we will describe the

separation of resources in more detail, looking at spa-
tial and temporal resources in turn.

3.1 Spatial Separation

To be able to run a guest operating system in a par-
tition, a microkernel must provide access to portions
of the system’s hardware, i.e. memory, memory-
mapped or (on x86) port-mapped I/O registers, and
interrupts. It must also provide mechanisms for the
guest operating system to distribute and revoke ac-
cess to these resources by applications, running on
top of it. This has to be done as flexibly as possible
to allow all kinds of operating systems as guests and
to keep the porting complexity small [12].

To ensure independence between guest systems,
these resources must be distributed by a commonly
trusted party (the kernel). To do so, the microker-
nel assigns to each partition a set of virtual address
spaces, which act as containers for resources. With
these methods, the microkernel is able to guarantee
that no partition can interfere with another.

But this only covers user space resources. The
microkernel itself needs memory to manage pageta-
bles, stacks, ready-, and wait queues, etc. These
resources also need to be separated, or else one parti-
tion could mount denial of service attacks by making
the kernel consume huge amounts of memory, e.g. by
mapping one page to all available virtual addresses
within its address space [14].

Spatial separation in our approach is geared to
the ARINC 653 standard [1]: the distribution of re-
sources is made statically according to a fixed con-
figuration. The standard requires the most severe
restrictions to the system setup. The static config-
uration of resources is implemented by the ”System
Software Layer”. In addition to the seperation facili-
ties, the System Software Layer also offers communi-
cation services like shared memories and notification
mechanisms between partitions. This allows for se-
cure communication between guest systems accross
partition boundaries.

3.2 Temporal Separation

Most microkernels were not initially designed with
the goal of real-time execution in mind. Conse-
quently, many of them provide for spatial resource
separation as described in the previous subsection.
However, only few also provide the necessary facili-
ties to enable deterministic distribution of temporal
resources (i.e. processing time).

2This is also referred to as paravirtualisation in [3]. In fact, we consider virtual machine monitors such as Xen to be specialised
implementations of the microkernel concept.

3



The goal of a virtualisation environment is to
give every operating system executing within a par-
tition the illusion of having a constant proportional
share (i.e. a percentage) of the overall processing
time available for its own use. This would imply that
the execution time assigned to individual partitions
increases in a linear fashion as shown by the dash-
dotted lines in figure 2. In practice, however, the
processor(s) can only be time-multiplexed across the
partitions, i.e. every partition has a time slot during
which it is active. The idealised linear progression of
execution time is approximated by a ramp-like func-
tion as shown by the solid lines in figure 2.

real world time

partition 
exec time

1

2

active
partition

Part #1

Part #2

FIGURE 2: Per-partition execution time
vs. real world time

The quality of this approximation improves as
the granularity of time assignments, i.e. the abso-
lute duration of time slots is made shorter, however,
the resulting increase in switch frequency leads to
excessive overhead.

A softPLC is a classical example of a time-
triggered system: It has to be invoked periodically at
fixed points in time. If these invocations are not syn-
chronised against the partition switches, the softPLC
will experience unpredictable delays. These delays
can hit the softPLC anywhere during its cycle, i.e.
they can delay the PLC from becoming active (thus
increasing jitter), or they can delay its computation,
thus increasing any deadline the PLC may have to
maintain. Obviously, it would be desirable to switch
between partitions as quick as possible in order to
keep these delays small, however, we have already
seen that this is limited by the switching overhead
quickly becoming excessive. Another, possibly better
way is to synchronise the partition switches against
the softPLC’s cycle: The virtual machine hosting the
softPLC must be activated just in time for the soft-
PLC to become active and it must receive an amount
of time sufficient for the PLC to complete its job.
In this way, a softPLC hosted by a virtual machine
can deliver the same real-time characteristics as a

non-virtualised one. Since a PLC is a strictly time-
triggered system, the points in time when it is to be
activated are known in advance, i.e. they are de-
fined as a function of time only. From this follows
that, if partition switching should be syncronised,
the partition switches must also be defined strictly
as a function of time only. Most existing virtuali-
sation environments fail at this point: They allow
their individual virtual machines to suspend them-
selves and, once a VM does so, they immediately
switch to the next one. This method, while advan-
tageous from a processor utilisation point of view,
makes it impossible to predict the partition switch
times and so, a time triggered system (e.g. a PLC)
running in a virtual machine can not be syncronised
against the partition switches.

The time partitioning concept of our approach
is an enhanced variant of ARINC 653[1], a standard
which is popular in avionic systems: The ARINC
653 standard assigns periodically repeated time slices
of fixed duration to virtual machines. Every VM
can tell in advance when and for how long it will
be active, so it can synchronise its own scheduling
to the scheduling of virtual machines. However, a
disadvantage of the ARINC 653 method is that all
VMs must consume all of their allocated time: there
is no way to suspend VMs when they are idle, so
VMs have no choice but to ”burn away” any time
that they can not use for themselves. The amount
of time allocated to a VM is determined by worst
case assumptions: A real-time system running in a
virtual machine must be able to complete its task
within this time frame under all conceivable condi-
tions. However, worst case scenarios, though possi-
ble, tend to occur only rarely and so most real-time
virtual machines tend to have far more time available
than they actually use in the average case. Therefore,
systems using the ARINC 653 approach tend to ex-
hibit a rather poor processor utilisiation. If all VMs
would host real-time systems only, this waste of re-
sources would be inevitable, however, in our system,
we also have Linux, a non-real-time system which
could make good use of any excess computational
resources. Therefore, in our approach, we combine
the strictly time-driven ARINC 653 scheduler with a
priority-driven scheduler: any amount of time that is
assigned to, but not used by the softPLC, is dynam-
ically re-assigned to Linux. This is achieved by plac-
ing Linux into a “background” time partition which
is always in a runnable state and assigning a priority
lower than the softPLC’s to it.

4



time

priority

softPLC time
partition slot

used time

softPLC

Linux

FIGURE 3: A high priority softPLC in an
own time partition and Linux in the back-
ground.

The amount of time that the softPLC can con-
sume is limited, so, even if the PLC made an at-
tempt to monopolise the processor at high priority,
it could still not starve Linux (as would be the case
with RTAI or RTLinux). The softPLC always gets
its guaranteed share of resources at predetermined
points in time and also Linux has a guaranteed min-
imum amount of CPU time. Linux cannot disturb
the PLC during its execution and the PLC can not
detain Linux’s share of CPU time: The softPLC as
well as Linux need not trust each other any more.

4 Practical Implementation

In this section we describe some implementation de-
tails of the microkernel with a special focus of par-
titioning, CoDeSys, and the Linux kernel as guest
operating systems.

4.1 PikeOS Microkernel

In the 1990s, Sysgo have been developing their own
microkernel. Initially modeled after the L4 version
2.0 microkernel API as specified by Jochen Liedtke
in [13], the kernel evolved from the generic microker-
nel approach to a specialized kernel for embedded
systems with a focus on real-time and partitioning.
The kernel is written almost entirely in C to facili-
tate porting. Currently supported architectures are:
x86, PowerPC, MIPS, and ARM.

The general system design today is a static con-
figuration approach to fit the microkernel concepts to
practical embedded systems, which usually do not
need complex dependencies and capabilities. The
complexity depth was reduced to typical use-cases,
like a Linux environment running in a partition on
top of a System Software Layer, next to other ser-
vices with a similar grade of requirements.

4.2 Basic Concepts

Like L4, the PikeOS Microkernel provides the con-
cepts of tasks, threads and inter process communi-
cation (IPC). Unlike L4, it extends the task concept
with the notion of ”abilities”, and it offers partition-
ing of resources as well as computation time.

A thread is the basic entity of execution. It has a
unique identifier (UID) and is bound to a task. It is
implemented by a register context which is scheduled
at a given priority and time partition. Optionally, it
can register a handler to receive exception messages.
A thread can also register itself as interrupt handler,
thus facilitating interrupt handling at user level.

Each thread is assigned to a task. A task is a
container for threads, which all share the same vir-
tual address space. Furthermore, it defines a set of
”abilities”, which restrict the allowed system calls
of its threads. Tasks are organised in a hierarchical
tree. All tasks have a parent task and may have child
tasks. Unlike the clans and chiefs concept [12], the
microkernel manages task based communication and
interrupt handling rights. These rights can be inher-
ited from their direct parent by child tasks, where
the parent is able to further restict them. Thus, a
child can at most have the same rights as its parent,
but never more. A task also restricts the priorities of
its threads to an upper bound, the so-called ”max-
imum controlled priority” (MCP). Again, a child’s
MCP can at most be the same as its parent’s, but
never higher.

Tasks are also grouped in ”resource partitions”:
Tasks belonging to the same resource partition share
a common kernel resource pool. Whenever a kernel
call is made which causes the kernel to allocate a re-
source, that resource is taken from the caller’s kernel
resource pool. Thus, tasks belonging to the same re-
source partition can mount denial-of-service attacks
against each other, but tasks with different resource
partitions can not.

The kernel supports inter process communication
(IPC) as standard communication mechanism. An
IPC operation is synchronous and allows to transfer
an arbitrary set of data or memory mappings be-
tween threads in different tasks.

Further extensions to the L4 concepts are an
asynchronous notification mechanism and a special
map system call. The notification mechanism has
been added to simplify notification in a time parti-
tioned environment. The map system call has been
added to simplify process creation. This allows to es-
tablish all mappings before the first thread of a new
task is activated.

5



4.3 System Software Layer

The System Software Layer distributes all available
resources of the system according to a static config-
uration. Dynamical resource allocation is explicitly
not possible.

In addition to this resource distribution , the sys-
tem software layer also provides facilities for commu-
nication across partition boundaries. Probably the
most basic of these facilities is shared memory: It
is possible to define shared memory segments which
are accessible to multiple guests in different parti-
tions. To all communicating parties, such a seg-
ment appears as an external resource, i.e. neither
of them ”owns” it. This is necessary in order to
maintain secure isolation between the parties. In ad-
dition to shared memory, the system software also
provides two slightly more elaborate communica-
tion mechanisms: There are queuing ports, unidirec-
tional buffered, message based communication chan-
nels similar to pipes, and sampling ports, unbuffered
mechanisms roughly comparable to mailboxes. Both
concepts were modeled after the ARINC 653 stan-
dard [1]. These ports can be accessed in a blocking
and a non blocking mode. Again, resources used by
these communication facilities are owned by the sys-
tem software, a trusted component, so any operating
system hosted in a partition can rely on them.

Also, the System Software Layer provides mech-
anisms for health monitoring and partition control.
This makes it possible to define how to react on ex-
ceptions and errors, depending on the current sys-
tem, partition, or process state.

The system software layer also provides a rudi-
mentary file system and a a generic device driver
infrastructure.

4.4 Porting CoDeSys

There already exist a large variety of different soft-
PLC implementations, both as commercial products
or as open source projects. Therefore, rather than
re-invent yet another softPLC implementation which
would surely have been an inferior to these mature
products, we decided to port a readily available soft-
PLC implementation to our virtual machine environ-
ment. We chose ”CoDeSys” by 3s Smart Software
Solutions because of its availability in source code
form, its portability and –last but not least– because
it is well accepted in the market.

PLC programming is typically done with an off-
line tool in one of the programming languages stan-
dardised in [10]. In the case of CoDeSys, the tool
runs on a standard PC and connects to the softPLC
via Ethernet and TCP/IP. The tool generates IEC
compliant code which is downloaded to the softPLC

for execution. The tool also supports remote debug-
ging of PLC code via the same network link.

Internals

The softPLC itself runs several threads:

• The IEC threads execute the system’s IEC
function blocks. They can be time-triggered,
in which case they are executed periodically
at predefined points in time, or they can be
”event-triggered”, in which case their execu-
tion is controlled by an ”IEC event” (basi-
cally a boolean variable). It should be noted
that even ”event triggered” IEC threads are
actually time-triggered from the microkernel’s
point of view: Technically, they poll their
IEC event periodically and, depending on the
event’s current value, they either execute IEC
code or wait for the next cycle.

• The control thread triggers the PLC’s IEC
threads and it supervises them: If any of them
exceeds their time allocation, it stops the of-
fending thread and signals a fault condition.

• The communication threads are responsible for
communication via TCP/IP or –optionally– se-
rial link. Unlike the other threads mentioned
so far, these threads are event-triggered as they
are activated by external events. Also unlike
the other threads, these threads do not have to
fulfill hard timing requirements.

The CoDeSys PLC has previously been adapted
to a number of different real-time operating systems.
It expects its run-time environment to support ba-
sic real-time, multithreading functionality. To port
CoDeSys to our environment, we used the already
existing implementation of the POSIX PSE51 (”Min-
imal Realtime System Profile”) [11] API to provide
this functionality. CoDeSys also needs TCP/IP sock-
ets for communication. These were provided by a
port of ”lwIP”, the ”light weight IP” stack [7].

Hardware interfacing

In typical softPLC applications, the PLC interacts
with the outside world via external I/O compo-
nents which are connected to it either directly (”lo-
cal I/O”) or via various different fieldbuses. Thus, it
is crucial for our PLC implementation to support a
wide variety of fieldbuses. In the current prototype
version, local I/O and Profibus are already supported
and ongoing development aims at adding support for
CAN, EtherCAT and Profinet. Unlike most other
virtual machine environments, our system is able to
partition the hardware’s I/O resources, too, i.e. for

6



every partition, it is possible to individually select
the memory-mapped or port-mapped I/O registers
that should accessible to it. In this way, the avail-
able selection of CoDeSys drivers for different field-
bus modules can be re-used in our environment with
little to no change.

Communication with Linux

Communication between the softPLC and Linux is
facilitated by the communication mechanisms pro-
vided by the system software layer. Queuing ports
and sampling ports can be accessed from both sides
like normal I/O devices. Either side can use this
interface in ways to eliminate unwanted dependen-
cies beween the two sides, for instance, the PLC can
avoid being blocked by an attempt to send messages
in case the Linux side does not read its end of a sam-
pling port fast enough.

4.5 Implementing Linux as a Virtual
Machine

Porting Linux to a virtual machine is not a new con-
cept. The currently existing ports to IBM s390, L4
Microkernel [8] and XEN [3] are paravirtualization
approaches and have proven that running Linux on a
hypervisor is possible and efficient. With User Mode
Linux (UML) [6], even a port to Linux itself exists,
where the virtual machine is a Linux process on the
host system.

Another method for running Linux (or in fact,
any operating system) in a virtual machine is full sys-
tem virtualization. Virtualizers like VMWare [17],
Virtual PC or QEMU [4] execute an unmodified op-
erating system environment, where the OS kernel is
unaware of the virtualization. The technique typi-
cally used by these virtualizers is dynamic recompi-
lation of the binary code at runtime, when the code
cannot be executed directly. In most cases all ac-
cess to hardware is emulated, it is almost impossible
to enable direct access to the host system’s hard-
ware without compromising the entire system. Only
simple, protocol based hardware like USB can be di-
rectly virtualized.

The emulation approaches require a set of drivers
on the host system to be used by the virtualized
hardware. For example, some kind of graphics driver
is necessary to display the emulated framebuffer.
However, this also increases the trusted code base
of the host system, which makes this approach infea-
sible for our purposes.

We use the paravirtualization approach where
the Linux kernel is aware of the microkernel envi-
ronment. Then, Linux can properly use the assigned

components of the underlying hardware and use spe-
cialized drivers e.g. to communicate with other vir-
tual machines.

Our paravirtualized kernel, named P4Linux, was
designed according to the following design goals:

• Inhibit any side effects on other virtual ma-
chines.

• Keep full ABI compatibility, don’t rewrite ap-
plications.

• Keep overhead small for fast execution.

• Ease porting to other processor architectures.

Details on the Implementation

The Linux architecture layer is scalable enough to
run on either a small embedded system, or a large
multi processor server cluster. Therefore, we imple-
mented the microkernel awareness like a new archi-
tecture.

To do so, the following concepts had to be
adapted:

• Virtual Memory Management

• I/O resource management

• Exception Handling

• Interrupt handling

Since User Mode Linux (UML) was already al-
ready available, and since it uses similar abstractions,
we used its ”SKAS” approach as a starting point.

Memory Management The Linux memory man-
agement layer internally uses multilevel pagetables
like on x86 to maintain the virtual address space
of its userspace processes. After modifications to
a pagetable, the Linux kernel has hooks to flush a
CPU’s Translation Lookaside Buffers (TLBs). Taken
from the UML approach, we hooked these functions,
too, and used the mechanisms provided by the mi-
crokernel to modify address spaces. The microkernel
offers system calls to map a set of pages from one ad-
dress space to another, and to revoke this mapping
by unmapping pages from one’s address space.

However, the mapping system call transfers
pages from the virtual address space of one task to
the virtual address space of another. This stands in
contrast to a normal Linux implementation, where
physical pages are mapped to virtual addresses in a
process’ address space.

From the Linux kernel’s point of view, two differ-
ent virtual memory views exist: the virtual memory
of its own address space and the virtual memory of
its userspace processes.

7



So, to keep the implementation easy, only one
big chunk of physically contiguous memory can be
used as Linux main memory. This eases calculation
of DMA transfer addresses, as a fixed offset is used
to calculate bus addresses.

Also, there is a restriction: as the P4Linux kernel
and all user space processes run in their own address
spaces, the Linux kernel cannot access the memory
of its userspace processes directly. Taken from the
UML approach, all copy in and out operations by the
kernel must be translated back to the corresponding
addresses in the Linux kernel address space.

Memory mapped I/O resources are no problem
at all. The Linux kernel starts with all I/O resources
it can access already mapped at start up. A driver
calling ioremap() to get a virtual mapping of an I/O
device now gets a pointer to these premapped mem-
ory areas.

Exceptions From the microkernel’s point of view,
all Linux userspace activities cause exceptions. Ex-
ceptions, like TLB misses or non-microkernel system
calls, are propagated to a userspace exception han-
dler. For Linux processes, the P4Linux kernel reg-
isters as this exception handler. On each exception,
it receives an IPC containing the complete register
context of the faulting process and tries to solve the
exception by mapping a page in case of a pagefault,
executing a Linux system call, or sending a signal.

Interrupts The microkernel’s mechanisms to serve
interrupts to userspace handlers need an active
thread to wait for an interrupt. The P4Linux kernel
offers a set of threads waiting for these interrupts and
other asynchronous events, for example reception of
data from other partitions. Finally, these threads
call the Linux do IRQ() implementation to invoke
the registered handlers.

An interrupt blocking mechanism is implemented
by priority: if the Linux kernel doesn’t want to re-
ceive interrupts, it raises its priority above all asyn-
chronous helper threads and it lowers its priority
again after the critical section. This mechanism is
quite fast, because the microkernel supports lazy pri-
ority switching.

Problems and Side-Effects

The isolation between partitions crucially depends
on the microkernel’s address spaces, which are im-
plemented by means of memory management hard-
ware (an MMU). But if there exist devices which are
able to access the bus directly, bypassing the MMU,
then this safety concept fails. The next generation
machines are likely to have IOMMUs that will solve

this problem once and for all, but in current hard-
ware, there are several devices capable of mastering
the bus while bypassing the MMU. Any guest oper-
ating system that has access to one of these busmas-
ters is indirectly able to access any location in the
system, i.e. it can cause any amount of damage.

One solution for this problem is to restrict hard-
ware access only to polling devices or framebuffers
and revoke any bus mastering capabilities from the
devices.

Another solution is to divide a driver into a
trusted and an untrusted section: only the trusted
parts must access the hardware and are implemented
outside the Linux kernel in a separate server, whereas
the untrusted parts remain inside the Linux kernel
and handle the software stacks.

Both solutions introduce additional communica-
tion overhead.

The current implementation is also restricted to
uni processor execution, due to its simple but fast
locking approach via priority switching.

Performance

An approach to port Linux to a microkernel can
never be as fast as a native Linux kernel running
on the bare hardware.

We benchmarked the overhead of our approach
with two different benchmarks: a microbenchmark
calling performance critical functions in a loop and
a real-world benchmark, compiling a Linux kernel.
The target platform for the tests is a 600 MHz In-
tel Celeron / 256 MB RAM embedded industrial PC
with Debian 3.1 installed. We chose this platform,
as it is widely used in fanless industrial environment.

The Linux kernel used for this benchmark is
taken from SYSGO’s ELinOS distribution. It is a
modified 2.6.15 kernel. We compare the time of a
kernel build on a native i386 target against our mi-
crokernel environment, running P4Linux. When pos-
sible, both kernels utilize the same set of drivers and
configuration options.

The microbenchmark calls performance critical
functions like getpid(), a null system call, 1000
times in a loop and compares the CPU’s time-stamp
counter before and after the loop. The time-stamp
counter on the x86 architecture is incremented every
CPU cycle. The presented values are the normalized
results of 1000 calls, also presented in CPU cycles.

8



Testcase Native P4Linux Factor slower

getpid() 344 7004 20,4
fork()+ exit() 66428 388883 5,9
vfork()+ exit() 19199 54524 2,8
fork()+execve() 216041 1537256 7,12
vfork()+execve() 214620 1536807 7,16

TABLE 1: Microbenchmark

The getpid() benchmarks shows an overhead of
about 6700 CPU cycles for all system calls compared
to the native implementation, caused by two address
space switches and IPC messages for one system call.

Especially performance critical are fork() and ex-
ecve() operations. The table shows the differences in
process creation between fork() and vfork() when the
created child immediately terminates. The last two
tests show the costs of address space space filling and
immediately flushing (the forked child process termi-
nates immediately).

Linux Compilation time
Native Linux 361 s
P4Linux 441 s

TABLE 2: Compiling the Linux Kernel

The macrobenchmark shows the overall system
performance impact. We compiled a Linux kernel
(2.6.16 for i386, configuration ”allnoconfig”) on the
test system and measured the overall time. The
P4Linux system is about 22 percent slower. This is
mainly caused by extensive use of the fork() system
call by the build system.

5 Conclusion and Outlook

In this paper, we introduced a new approach to co-
existence of a softPLC and Linux in a single ma-
chine. Unlike previous solutions, this one does not
force the two components to trust each other. It thus
makes it possible to apply the approach to safety-
critical systems. The method does have an impact
on system performance, however, we feel that this
impact is acceptable: most of today’s computer sys-
tems do not suffer from lack of performance, instead
they have severe safety and security problems. With
this background it seems sensible to sacrifice some
performance while gaining significantly on the safety

and security side. The softPLC is only one example
of a real-time system that can be hosted by PikeOS,
there are many others.

Current work on the PikeOS system aims at pro-
viding a large variety of real-time or non-real-time
operating system interfaces to run on top of PikeOS
(one of them being the CoDeSys softPLC). Work on
the softPLC itself aims at increasing the number of
fieldbuses that it supports.

In the next stage, the softPLC system is planned
to be turmed into a networked, distributed system of
PLCs which can share portions of their state accross
a network by means of a publish/subscribe mecha-
nism.

From the Linux point of view, the next goal is to
approximate performance to the native implementa-
tion. One of the most important issues is to reduce
process creation time. Furthermore, the overhead of
processor mode switches can be decreased by batch-
ing system calls. Additionally, new TLB interfaces
are verified, which support page table virtualisation.

Future improvements to the PikeOS Microkernel
are support for multicore systems and current hard-
ware virtualisation techniques for the x86 architec-
ture.

References

[1] ARINC. Avionics Application Software Standard
Interface. Technical Report ARINC Specification
653, Aeronautical Radio, Inc., 1997.

[2] M. Barabanov. A Linux-based RealTime Operating
System, 1997.

[3] P. Barham, B. Dragovic, K. Fraser, S. H, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the Art of Virtualization, 2003.

[4] F. Bellard. Qemu, a fast and portable dynamic
translator. In USENIX 2005 Annual Technical Con-
ference, FREENIX Track, pages 41–46, 2005.

[5] E. Bianchi and L. Dozio. Some experiences in fast
hard realtime control in user space with rtai-lxrt.
2nd Realtime Linux Workshop, Orlando, 2000.

[6] J. Dike. User-mode Linux. Online: user-mode-
linux.sourceforge.net, 2001.

[7] A. Dunkels, L. Woestenberg, K. Mansley, and
J. Monoses. lwIP embedded TCP/IP stack.
http://savannah.nongnu.org/projects/lwip/, Ac-
cessed 2004.

[8] M. H. Hermann Haertig and J. Wolter. Taming
linux, 1998.

[9] IEC. Functional Safety of Programmable Elec-
tronic Systems: Generic Aspects. IEC 65A (Sec-
retariat) 123, International Electrotechnical Com-
mission, February 1992. Technical Committee no.
65, Working Group 10 (WG10).

[10] IEC. IEC 61131-3: Programmable Controllers -
programming languages. Technical report, Interna-
tional Electrotechnical Commision, 1993.

9



[11] IEEE. 1003.13-1998 IEEE Standard for Informa-
tion Technology — Standardized Application Envi-
ronment Profile (AEP) — POSIX r© Realtime Ap-
plication Support. 1998.

[12] J. Liedtke. On µ-Kernel Construction. In Proceed-
ings of the 15th Symposium on Operating System
Principles, pages 237–250, 1995.

[13] J. Liedtke. L4 Reference Manual - 486, Pentium,
Pentium Pro, 1996.

[14] J. Liedtke. Preventing denial-of-service attacks on a
µ-kernel for WebOSes. In Proceedings of 6th Work-

shop on Hot Topics in Operating Systems, Cape
Cod, MA, May 5–6 1997.

[15] P. Mantegazza, E. L. Dozio, and S. Papacharalam-
bous. RTAI: Real Time Application Interface. Linux
J., 2000(72es):10, 2000.

[16] R. Morley. History of the PLC. R. Morley Inc.
[17] VMware. VMware ESX Server Online Documenta-

tion, 2005.
[18] P. Wurmsdobler. Linux for real-time PLC control?

Slower is easier. InTech, Industrial Computing:49–
51, November 2001.

10


