Observe and Regulate Memory Interference on
MPSoC: a Practical Approach

Andrea Bastoni*t, Alexander Zuepke*T, Marco Solierif
Technical University of Munich*, Minerva Systems]L
andrea.bastoni @tum.de, alex.zuepke @tum.de, marco.solieri@minervasys.tech

Abstract—The increasing deployment of Al-enabled cyber-
physical applications in industrial automation, robotics, auto-
motive, and avionics requires high computational power with
strict timing guarantees. Heterogeneous multiprocessor systems-
on-chip (MPSoCs) have emerged as a solution, integrating
application cores, real-time cores, and accelerators to balance
performance and energy efficiency. However, shared memory
hierarchies adopted by MPSoC introduce contention, potentially
jeopardizing the predictability of real-time tasks. To mitigate
these memory-related issues, both hardware-based Quality-of-
Service (QoS) and software-based memory monitoring and reg-
ulation strategies are available. However, in dependable and
real-time contexts, QoS mechanisms are not always effective
and, in general, configuring both hardware- and software-based
regulation optimally remains challenging. This paper presents
insights into MemPol, a recent software-based memory regulation
approach, and its integration into Minerva Systems Architect,
an industrial tool for managing memory contention in MPSoCs.
Through a real-world use case, we demonstrate how systematic
memory monitoring and regulation can preserve timing guaran-
tees while maximizing system utilization.

I. INTRODUCTION

Modern applications in the industrial automation, robotics,
automotive, and avionics domains are increasingly deployed
“on the edge” and require high computational power with
limited power consumption. Many of these cyber-physical ap-
plications perform critical operations and must satisfy stringent
timing requirements to prevent e.g., injuries or business-related
damages. To meet the demand of these applications, tra-
ditional microcontroller-based architectures have transitioned
to high-performance, low-power heterogeneous multiprocessor
systems-on-chip (MPSoCs). Such systems integrate CPUs,
GPUs, Al accelerators, and real-time cores, delivering high
computational power with efficient energy usage.

For example, in the automotive domain, modern onboard
ADAS (Advanced Driver Assistance Systems) utilize CPUs,
GPUs, and Al accelerators to process data from multiple
cameras, LiDAR, and radar. These systems enable real-time
object detection and trigger emergency braking procedures or
assist with lane-keeping. Similar applications exist in robotics,
where high-performance real-time sensor fusion and Al-
based decision-making are essential for operating autonomous
robots.

To maximize efficiency and performance, MPSoCs
(e.g., [1], [2]) rely on shared memory hierarchies, introducing
potential contention for critical applications that must compete
at the cache, interconnect, and memory-controller levels.

Memory contention poses a significant challenge for real-time
tasks, as their timing guarantees may be affected by best-
effort tasks with aggressive memory workloads. Additionally,
interference can compromise separation properties, which are
essential in many safety and security certification processes.

An example of problematic contention at memory level can
be seen in Fig. 1, which shows the impact of different types
of memory interference on the execution time of a hypervisor-
isolated real-time application running on an AMD Ultrascale+
ZCU102 MPSoC [1]. As visible in the figure, the application
is sensitive to thrashing in the L2 cache and to interference
in the memory controller (WC Write and Linear Write), but is
relatively unaffected by cache flush or clean operations on the
shared L2 cache.

2000

—— Exec time
1750

Linear Write

-
17
o
S)

1250
Flush, Clean

Benchmark time (us)
=
)
S
S

~
a
s}

Time (s)

Fig. 1. Tracing of execution time (us) variability of a benchmark application
under different types of memory interference using Minerva Systems Archi-
tect [3] on ZCU102 [1].

To address these issues, hardware vendors provide quality-
of-service (QoS) mechanisms such as Intel RDT, Arm MPAM,
and Arm QoS-400 [4]-[6], allowing monitoring and regulation
of memory bandwidth consumption. However, as shown in
recent studies (e.g., [7], [8]), these mechanisms are difficult
to correctly configure, might not provide the expected level
of protection, and are not always available on embedded
MPSoCs.

In the literature, several strategies have been proposed to
leverage the monitoring capabilities of MPSoCs’ Performance
Monitoring Units (PMUs) and implement software-based reg-
ulation, which has proven effective in mitigating certain types
of memory interference [9]-[11]. Nonetheless, due to the
numerous control parameters and their complex interactions,
finding the optimal configurations to achieve both isolation
and performance remains a major challenge.

This paper presents key insights into MemPol, a re-
cent software-based memory monitoring and regulation strat-
egy [11] and its transition to Minerva Systems Architect [3],

241 timer and PMU interrupts —»— | |
oo L only timer interrupts —>— | ;
g 2
s
c 18|
2
38
S 16|
o
D 14
1.2 -
1 i i \ i i i i %
0 100 200 300 400 500 600 700 800 900 1000
MemGuard Regulation Period [us]
Fig. 2. Adapted from [11]. Impact (slowdown) of MemGuard’s timer and

regulation overheads on a memory-intensive application as a function of the
replenishment period. Results are in line with other works [9], [15].

an industrial tool designed to support the development of
complex cyber-physical applications on MPSoCs. Architect
enhances traditional processes with a developer-driven, itera-
tive approach to identifying, analyzing, and resolving potential
memory issues, effectively helping integrators achieve higher
system utilization, while ensuring predictable performance.

To illustrate the practicality of this approach, we present
a real-world example, demonstrating how memory monitoring
and regulation can be effective in preserving timing guarantees
while delivering high performance.

II. APPROACHES TO MEMORY REGULATION

Several software- and hardware-based techniques have been
proposed to mitigate uncontrolled memory interference.

MemGuard [9] first proposed a software approach that
levarage performance counters (PMC) to regulate memory
bandwidth at the OS or hypervisor level. Methods following
MemGuard-based strategy [12]-[14] regulate the maximum
number of memory transactions that cores can perform over
a defined period of time. Cores are assigned a memory
budget that is periodically replenished and that is consumed
when cores perform memory transactions. Cores idle when
the budget is depleted. MemGuard approaches rely on PMCs
to monitor memory bandwidth and require a mechanism to
deliver replenishment interrupts and idle the cores. Although
short periods are desirable to enforce fine-grained regulation,
the excessive overheads caused by frequent interrupts make
high-frequency MemGuard regulation non viable [15].

As an example, Fig. 2 reports the overheads of timer-
replenishment and regulation interrupts in the MemGuard
setup used in [11]. The figure shows the slowdown of a
memory-intensive application as function of the replenishment
period. The budget is measured as the number of L2 cache
refills. Fig. 2 separately shows the impact of timer and regu-
lation (PMU) interrupt, and timer interrupts only. As shown,
for short regulation periods (32 ps), MemGuard is affected by
extremely high overhead—up to 2.4 slowdown ratio.

The recently proposed MemPol [11] software-based regu-
lation targets some of MemGuard limitations and proposes a
low-overhead memory monitoring and regulation mechanism

that operates “from outside” of the main cores at high fre-
quency. Sec. III presents MemPol in greater details.

Modern MPSoCs may provide additional QoS and monitor-
ing features (e.g., [16]) that can be used alternatively to PMCs.
Although effective, such mechanisms monitor at platform
interconnect level, making it difficult to attribute memory
traffic to the generating cores. Furthermore, their availability is
limited to subsets of COTS boards. Several studies [17]-[20]
have explored such primitives to realize bandwidth regulation.

Comprehensive monitor and regulation strategies such as
Intel RDT, Arm MPAM [4], [6] might be available on selected
MPSoCs, but they might fail to provide the expected level of
protection [8]. Additionally, Arm MPAM defines all control
interfaces as “optional”, requiring a careful analysis of the
knobs available in actual implementations.

Hardware-based approaches to memory bandwidth regu-
lation (e.g., [21]-[24]) propose the development of custom
hardware or FPGA logic to realize fine-granularity regulation
at hardware level.

Orthogonal to memory bandwidth regulation, to control in-
terference at cache and DRAM level, techniques such as [10],
[25]-[27] have been proposed. Hardware support to cache-
partitioning is also available on recent Arm-based boards [28].

III. BACKGROUND ON MEMPOL

The software-based regulation recently proposed by
MemPol [11] aims to overcome limitations of MemGuard-
based approaches. Specifically, MemPol’s design targets the
high overheads of high-frequency interrupt-based regulation,
and enables flexible regulation policies based on the simulta-
neous monitoring of multiple platform dimensions.

The high-frequency, low-overhead design is achieved oper-
ating from the outside of the target cores. MemPol monitors
the last-level cache (LLC) activity by polling the cores’ PMCs
and uses a core-independent interface (e.g. the CoreSight
debugging interface) to halt cores when they exceed their given
memory budget.

Furthermore, MemPol realizes a multi-dimensional reg-
ulation based on the combined contribution of multiple
PMCs. This overcomes one limitation of MemGuard-based
approaches that can only monitor one PMU dimension at
a time. Although the regulation in [11] is based on the
accumulated read and write activities of a core, depending on
the platform and on the availability of PMC, different types
of regulation can be enacted.

Compared to MemGuard, MemPol’s regulation logic is
performed every polling period P using an on-off controller
policy that can idle cores for short time intervals (at least P).
Due to polling, the MemPol controller can observe the po-
tentially high numbers of transactions generated by monitored
cores only during the next polling interval. This overshooting-
effect is countered using a short polling period P in the
microsecond range. Instead, due to overheads, MemGuard
approaches can only operate in the millisecond range.

The low-overhead, high-resolution capabilities of MemPol
can be used to realize both local per-core regulation policies

MemPol (raw)

MempPol (avg)
MemGuard (raw)
50% bandwidth -~ - 120

%WM}M%WNMMNWMW‘ 777777 WMWMM AM‘AVA\‘M“A.M = ‘1 |

=)
3

L £
ey = 1005

@
3

Memory Accesses [64 B Cachelines in 6.25 ps]
% Sustainable Bandwi

| ARERREREEN| I
0 500 1000
Time [us]

o

| | I 0
1500 2000

Fig. 3. Adapted from [11]. Comparison of the regulation behavior of
MemPol (polling at 6.25 ps) and MemGuard (regulation period 1 ms) on
AMD Ultrascale+ ZCU102 regulating a worst-case memory reader at 50%
memory bandwidth. For MemPol, the average over 200 ps is also shown for
better visualization of its resulting regulation.

(similar to MemGuard), as well as global regulation policies
that can (dynamically) redistribute unused bandwidth not
reclaimed by cores, while still keeping the overall bandwidth
below a global memory budget.

The implementation of MemPol relies on the PMU register
interface to monitor the PMCs of a core and simulates the
behavior of a debugger to stall and restart cores. The control
logic is typically deployed on one of the (small, real-time)
cores available on MPSoCs. For example, in [11], one Cortex-
RS or one Cortex-M4/7 are used, depending on the MPSoC.
However, the control logic can also be deployed on large
application cores. We invite the interested reader to refer
to [11] for more details. An example of MemPol’s design—
within Minerva Systems Architect [3] on a ZCU102—is shown
in Fig. 6. Here, MemPol is deployed on one real-time Cortex-
RS core and operates only from its TCM memory to avoid in-
terfering with the monitored and regulated Cortex-A53 cores.

Fig. 3 presents a comparison of the fine-grained regulation
preformed by MemPol and the coarse-grained one by Mem-
Guard. In the example, both mechanisms achieve the same
regulation results over a longer time span, but MemPol regu-
lates at a higher frequency (6.25 ps) than MemGuard (1 ms).

Instead, Fig. 4 shows the redistribution of unused memory
bandwidth that can be enacted by MemPol’s global regulator.
In the figure, core ¢y (regulated at 50%) alternates between
memory access and idle phases, while core c; (regulated at
25%) always performs memory accesses. Using the global
regulator, c; is allowed to use any remaining bandwidth up
to the global configured limit of 75%. The overshooting due
to MemPol’s polling behavior is visible in Fig. 4 when c¢g
returns from being idle, as the local regulator for cq lets the
core consume the bandwidth up to its budget.

IV. INDUSTRY TRANSFER

Research-driven approaches such as MemPol [11] and Mem-
Guard [9] are effective memory regulation and monitoring
strategies for MPSoCs. However, their practical adoption in
industrial embedded and cyber-physical systems remains lim-
ited. In fact, these methods require significant expertise in MP-

)
a

Core 0 @ 50% ——
ore 1 @ 25% = 120
Average all cores

=
3

i | 100

£
°
3
s A\/Hmw\../ A VAR Vvvv‘iso $
[ss]
\/’A'\/\NV\ °
8
e g
50 v VAN i VAN g
2
L4 @
| \ /
25 RaFR Ao i

Memory Accesses [64 B Cachelines in 6.25 ps]
i

| | | i o
0 250 500 750 1000 1250 1500 1750 2000
Time [us]

Fig. 4. Adapted from [11]. MemPol bandwidth redistribution: Core cg is
regulated at 50% bandwidth and alternates memory access and idle phases
every 750 ps. Core c; is regulated at 25% bandwidth and accesses memory
all the time. Both cores perform worst-case reading. The global regulator is
enabled and redistributes unused bandwidth from cg to ¢; while cg is idle, but
keeps the overall bandwidth at 75%, which the sum of both cores’ configured
bandwidth. Solid lines average over 200 ps. Polling at 6.25 ps.

SoC architectures for proper implementation, deployment, and
result analysis—expertise that is typically found in academic
research rather than industrial development teams.

In industrial contexts, developers and system integrators are
domain experts focused on application-specific functionalities
rather than low-level platform behaviors. Furthermore, appli-
cations are typically tested in isolation, and platform-related
performance bottlenecks or potential memory interference
issues are often discovered late in the integration phase. At this
stage, resolving such issues can be highly disruptive, leading to
delays, increased costs, and potential compromises in system
functionality. In some cases, unresolved performance problems
may necessitate costly hardware upgrades or force developers
to scale back system features.

To bridge the gap between academic research and indus-
trial application, memory regulation strategies like MemPol
must be integrated into a broader, structured framework. This
framework should seamlessly align with established industrial
methodologies, supporting iterative, developer-driven work-
flows and potentially certified processes.

Moving toward this goal, we integrated the memory moni-
toring and regulation provided by MemPol into Minerva Sys-
tems’ Architect [3] framework. The objective is to create a tool
to help developers and integrators address the challenges of
safe and secure integration on complex MPSoCs and optimize
application performance.

A. Architect Features

Memory Tracing and Inspection. Architect enables devel-
opers to visualize live memory traffic and memory interference
generated by concurrently executing applications. A variant
of MemPol is used to collect memory traces without inter-
fering with the applications. Using the GUI, memory-access
patterns and memory interference can be visually correlated
with applications running on each core and with additional
information coming from standard performance monitoring
(e.g., perf on Linux). Problematic and unexpected cross-core

File Settings View Threads Help

Process tree
Process tree
C target
¥ systemd -1
v sshd-1026
v sshd-2634
v (M) (F) sshd - 3037

bt

Container tree _Selected process.

Statistics
~ Info

Name: target

Minerva Architect Tool

Context switch (PID)

- @ x

I
204265

cPU

" |y
@ v g PID: 3159 - TID: 3159 el
¥ sudo- 3157 9.00%
S) Pid Ns: Juser.slice/user-100L.slice/session-L.scope
@ (M) target - 315 Priority: BE - - - . -
— Actions
0
@ Goto first occurrence '
—— p— — — — —
Apply to children (by
> Filter (2
) u ey sl - - ===
 Mark 5
Periodic (beta) (7 o
Affinity mask: (G - mEEEERE EEEERE jEEEIE EmEEEE n am—_
37.5%
vo vi 2 3
Pinto CPU
= Events | (B {1 L e T T | IR ' [[e]
e e e e e —————— e e e e
Number of events: 501002 m RED Q70
Events distribution Time
Mswitch_out Memory access (number of reads and writes)
switch_in
Wwake
|
| |
I |
A il L \—‘_J L kil e lowdl
, | i .
g \ I ‘ J [-V
| |
N "l | il i |
< \ | f i

Fig. 5. Architect GUI trace example on a quad-core ZCU102 MPSoC [1]. The selected process (target) is marked in blue in the upper part of the figure
(second CPU). Orange tasks are potential interference. The lower part of the picture visualize memory accesses. The pop-up control panel shows some of the

statistics and tunables that developers can access during an interactive session

Linux Target on AMD/Xilinx Ultrascale+ ZCU102

_________________________________ N
: 1
H Linux Task \
o/
! Linux Task Linu Task |
| Q| Ethernet Host GUI ?\,/
| LargeCore o | v __ os
H i~ application 2 i | _Host6Ul Q
A
! o o v e d | |
I — s i S LN N N
| pert support LN .
S i Onwver
—
! Linux Kernel i |
T | _
i ! :
| nsa || asa || asa || asa | t===e 1
| o 1 2 3 !
=N
1 On) 4 1
! 1
] Womery cac W 00R) |1 s || e
1 - |
Py - | B ————— B
|

Fig. 6. Architect deployment for a Linux target system on a ZCU102. The
“owls” identify key components of the architecture: host GUI, monitoring
and regulation logic between Cortex-AS53 cores and one of the Cortex-R5
core, target applications collecting performance information from Linux
task and memory-related information.

memory interference can thus be quickly identified. Architect
offers detectors for tasks periodicity and interrupt tracing,
enabling faster identification of recurring patterns.
Interference Generator. Generating memory stress tests
require significant knowledge of MPSoC architectures. Archi-
tect simplifies this task with pre-configured memory stress-test
scenarios for multiple MPSoCs. Scenarios can be controlled
interactively via the GUI, or in an automated way. Multiple
complex memory stress patterns are available by default and
the execution of each interference generator can be customized
by selecting the priority and the executing core.
Interference Control Capabilities. The GUI provides in-
teractive access to regulation settings for different (board-
dependent) variants of memory bandwidth regulation. The
settings directly operate on the (appropriately tuned) memory-
regulation capabilities of MemPol. The impact of different

(e.g., CPU affinity, process tree filtering).

regulation levels can be observed live, and adjusted according
to the type of workload and interference. Once identified, the
best strategies for memory regulation and interference miti-
gations can be integrated with the running operating system
and/or hypervisor. For example, pre-configured integrations for
multiple flavors of Linux and the Jailhouse hypervisor have
been developed. Fig. 5 illustrates some of the visualization
and control options of Architect.

Interference Testing Automation. Architect enables mon-
itoring of regressions during incremental integration and pro-
gressively complex testing activities. The interactive configu-
rations that can be activated from the GUI can be replicated
and activated automatically during long-running testing activ-
ities to facilitate regression testing and support certification
evidence. A simple example of the potential of the Python-
based API is shown in Listing 1. The API uses coroutines
to asynchronously coordinate the execution of actions on the
target platform. The example shows a simplified version of the
tests discussed in Sec. V. Lines 3 and 17 start and stop the
memory bandwidth regulation, while lines 7 and 9 update the
memory budget and start interference on the selected cores.

B. Architecture and Supported Platforms

The framework adopts a host / target split architecture that
only requires an Ethernet connection between the target SoC
and the host of the developer / integrator. Analysis and control
activities are triggered via a responsive GUI that visualizes
run-time memory and application information from the target
with high resolution. The architecture is illustrated in Fig. 6 for
a Linux deployment on an AMD/Xilinx Ultrascale+ ZCU102
MPSoC [1]. The MPSoC features four Arm Cortex-A53 whose

Listing 1. Example of Architect API Usage

async def test (target: Target):
start regulation on target

await target.membw_ctrl.enable ()

for budget in range (600, 1600, 100):

for core in range (0, 2, 1):

update the budget for the current round

await target.membw_ctrl.adjust (core,

start interference

budget)

await target.interference.hog_start (core, 1, 1)

run for 40 seconds
await asyncio.sleep (40)

for core in range (0, 2, 1):

await target.interference.hog_stop (core)

stop the regulation

await target.membw_ctrl.disable ()

memory accesses are monitored from one of the Cortex-R5
available on the board using a variant of MemPol. On Linux,
Architect leverages the perf infrastructure to collect task-
related information such as context switches and execution
time, and implements a target-side application (target)
that collects both memory and perf tracing data. target
implements the communication endpoint with the system’s
GUI that retrieves the data, visualizes it at high resolution
(60 FPS) and also stores it for offline detailed analysis.

Compared to the platforms supported by MemPol, Architect
support has been extended to a wider range of Arm v8 families,
including AMD Ultrascale+ (Kria KV26, KR26, ZCU102,
etc.), NXP (i.MX8 and S32G), and Texas Instrument (AM62x,
AMG67x). On the target side, Architect supports bare-metal (no
OS) environments, Linux, and SYSGO PikeOS [29]. On the
host side, the GUI is available for Linux.

V. EXAMPLE USE CASE

We present the application of Architect in the context of a
realistic industrial use case derived from a customer’s deployed
system. The analyzed system is implemented on an AMD
UltraScale+ ZCU102 MPSoC [1], featuring four ARM Cortex-
AS53 cores sharing a 1 MiB L2 last-level cache (LLC), a unified
memory hierarchy and an FPGA programmable logic area.
The workload is distributed across the four cores following a
partitioned scheduling approach. Specifically, one core is ex-
clusively responsible for handling communication with FPGA
IP blocks controlling a critical industrial appliance. Tasks
assigned to this core have strict real-time constraints, requiring
predictable and low-latency execution loops to guarantee the
dependable operation of the appliance. Any deviation from the
required timing behavior could result in significant operational
disruptions and business impacts, such as interruptions of
production lines.

During integration tests performed under increased work-
loads on the three supposedly independent cores, the customer
observed deadline misses for the latency-sensitive tasks. De-
spite testing, traditional debugging methods proved insufficient

to precisely identify the root cause of the timing degradation.
By leveraging Architect, we monitored and analyzed memory
contention and cache interference scenarios in detail. In this
paper, the customer’s latency-sensitive application is modeled
using a representative benchmark application.

In a preliminary analysis phase, we used Architect’s GUI
to systematically evaluate the application’s sensitivity to dif-
ferent sources of memory interference. Through the GUI, we
interactively introduced several interference scenarios, execut-
ing on CPUs separate from the latency-sensitive tasks. The
system’s execution was extensively traced, capturing detailed
performance data from the representative benchmark while
the interference workloads was running concurrently on the
neighboring cores.

Fig. 1 presents a representative sample of the observed
performance degradation due to different interference types.
At around 100 seconds, we introduce a worst-case memory
write pattern, resulting in observable but limited performance
degradation. Between seconds 100 and 500, cache flush and
cache clean operations are performed on the shared L2 cache;
the benchmark remained relatively unaffected, confirming
limited sensitivity to these operations. However, a significant
performance degradation can be seen at approximately second
500 when thrashing in the shared L2 cache is introduced.
From second 800 onwards, we execute linear memory write
interference, simulating high-bandwidth workloads from com-
peting tasks. Under this condition, the benchmark shows
severe degradation and unstable execution behavior. Specifi-
cally, around second 1000, the benchmark spikes and enters
a protection mode emulating a system safety “halt” measure
to prevent potential operational hazards (as such, the spikes in
benchmark behavior are not shown in the figure).

Given the impact of L2 cache thrashing and linear memory
write interference observed during the interactive analysis,
automated tests were designed to evaluate whether memory
bandwidth regulation could effectively mitigate these inter-
ference scenarios. The goal was to identify optimal memory

—— Exec time
8000

7000

6000 700 MB/s

600 MB/s 800 MB/

900 MB/s 1100 MB/s 1300 MB/s
MB/s 1000 MB/s 1200 MB/s 1400

W
) | M

5000
A,N

1 s

Benchmark time (us)

,WJJ“)

4000 h ‘! ‘

| /
3000 A ,M\‘ h “N
A ./

2000

250 500 750 1000 1250 1500 1750

Time (s)

Fig. 7. Execution time of the latency-sensitive benchmark (y-axis) subject to
L2 thrashing interference under progressive bandwidth regulation (from 600
to 1400 MB/s). Note that the time intervals differ from Fig. 8.

bandwidth regulation levels that prevent timing violations in
latency-sensitive tasks while maintaining high utilization of
system resources. Leveraging the Architect API, we imple-
mented a series of automated experiments that systemati-
cally apply memory bandwidth regulation under controlled
interference conditions. Specifically, the system was stressed
via either L2 thrashing or linear memory write interference
patterns on cores distinct from the latency-sensitive applica-
tion. During each experiment, the allowed memory bandwidth
on the interfering cores was gradually increased in periodic
increments, monitoring the timing behavior of the latency-
sensitive benchmark. This iterative approach continued until
the latency-sensitive task approached or exceeded predefined
safety bounds.

Figures 7 and 8 illustrate the impact of memory bandwidth
regulation on L2 thrashing and linear memory write work-
loads, respectively. Each interval has variable duration (150
seconds in Fig. 7 and 30 seconds in Fig. 8) and presents the
execution duration (y-axis) of the latency-sensitive benchmark
under progressively increasing memory bandwidth constraints
applied to the interfering cores. Note that the benchmark
dimension monitored in these tests differs from the dimension
monitored in Fig. 1 and that the y-axis therefore differs.

Bandwidth limitations were increased from 600 MB/s to
1400 MB/s, with the goal of maximizing available bandwidth
for the interfering cores without violating timing constraints on
the latency-sensitive tasks. The tests revealed that a regulation
threshold of 1200 MB/s provides the most suitable balance
between these two dimensions. As expected, the results also
indicate that memory bandwidth regulation is particularly
effective against linear memory accesses interference pat-
terns. Instead, the L2 thrashing interference scenario showed
comparatively limited sensitivity to bandwidth regulation, as
indicated by persistent latency spikes in Fig. 7.

The results show that additional measures are required to
improve predictability under heavy cache contention condi-
tions. Therefore, in further iteration of the project, we studied
the integration of cache partitioning techniques into the sys-
tem, while monitoring latency-sensitive application benchmark
when increasing both system utilization and cache pressure.

so0o] —— EXec time 1400 MB/
/\

1300 MB/s /

7000

A VA

|

6000 /
1200 MB/s | ‘

1100 MB/s | ‘ ‘ ‘
\
AT

4000 1000 MB/5 - |

5000

Benchmark time (us)

700 MB/s 900 MB/s | | ||

seﬁ;mys\‘ (\/rrr—,‘ ‘(’ I || | ‘ ‘
a | |
— N |

|
[I L] L Ll |l I
2000, 50 160 150

3000] 600 MB/s

Fig. 8. Execution time of the latency-sensitive benchmark (y-axis) subject
to linear write memory interference under progressive bandwidth regulation
(from 600 to 1400 MB/s). Note that the time intervals differ from Fig. 7.

VI. CONCLUSION

The increasing computational demands and stringent timing
requirements of modern Al-enabled applications have led to
the adoption of high-performance, low-power heterogeneous
MPSoCs. However, these systems’ reliance on shared memory
hierarchies can introduce significant resource contention and
achieving predictable real-time performance for dependable,
critical applications becomes a challenge.

This paper presented key insights into MemPol [11], a recent
software-based memory monitoring and regulation strategy
and its integration into Minerva Systems Architect [3], an
industrial tool designed to optimize the execution of critical
applications on MPSoC, and in particular to facilitate the
analysis and mitigation of memory interference

The high-frequency, low-overhead monitoring realized by
MemPol is integrated in Architect and complemented with
features such as live-tracing, interference generation and con-
trol, and testing automation that helps developers to address
the challenges of safe and secure integrations of complex
applications on MPSoCs.

Our real-world case study demonstrated that the combina-
tion of these features effectively ensures timing guarantees
and high performance, even under demanding interference
conditions such as L2 cache thrashing and linear memory
workloads. Additionally, our analysis can indicate problematic
interference that cannot be mitigated by memory bandwidth
regulation (e.g., that requires cache partitioning strategies) and
provides measurable metrics to also quantify the improvements
deriving from the implementation of such techniques.

ACKNOWLEDGMENTS

A. Bastoni and A. Zuepke were supported by the Chair for
Cyber-Physical Systems in Production Engineering at TUM
and the Alexander von Humboldt Foundation.

REFERENCES

AMD, Zyng UltraScale+ Device TRM, https://docs.
amd.com/r/en-US/ug1085-zyng-ultrascale-trm/.

(1]

https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm/
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm/

(2]

(3]
(4]

(5]
(6]

(71

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

NVIDIA, NVIDIA Jetson AGX Orin, https://www.
nvidia.com/en- us/autonomous - machines/embedded -
systems/jetson-orin/.

Minerva Systems, Architect, https://minervasys.tech/
architect.

Intel, Resource Director Technology, https://www.intel.
com/content/www/us/en/architecture-and- technology/
resource-director-technology.html.

Arm, ARM CoreLink Qo0S-400, https://developer.arm.
com/docs/dsu0026/.

Arm, Arm Memory System Resource Partitioning and
Monitoring (MPAM), https : // developer . arm . com /
documentation/ihi0099/.

M. Bechtel and H. Yun, “Denial-of-Service Attacks on
Shared Cache in Multicore: Analysis and Prevention,”
in RTAS 2019.

P. Sohal et al., “A Closer Look at Intel Resource
Director Technology (RDT),” in RTNS 2022.

H. Yun et al., “MemGuard: Memory bandwidth reserva-
tion system for efficient performance isolation in multi-
core platforms,” in RTAS 2013.

T. Kloda et al., “Deterministic Memory Hierarchy and
Virtualization for Modern Multi-Core Embedded Sys-
tems,” in RTAS 2019.

A. Zuepke et al, “MemPol: Polling-based
Microsecond-scale Per-core Memory Bandwidth
Regulation,” Real-Time Systems, vol. 60, 2024.

P. Modica et al., “Supporting temporal and spatial
isolation in a hypervisor for ARM multicore platforms,”
in 2018 IEEE International Conference on Industrial
Technology (ICIT), 2018, pp. 1651-1657.

N. Dagieu, A. Spyridakis, and D. Raho, “Memguard:
A memory bandwith management in mixed criticality
virtualized systems memguard KVM scheduling,” in
10th Int. Conf. on Mobile Ubiquitous Comput., Syst.,
Services and Technologies (UBICOMM), 2016.

J. Martins et al., “Bao: A Lightweight Static Parti-
tioning Hypervisor for Modern Multi-Core Embedded
Systems,” in Workshop on Next Generation Real-Time
Embedded Systems (NG-RES 2020), M. Bertogna and
F. Terraneo, Eds., ser. OpenAccess Series in Infor-
matics (OASIcs), vol. 77, Dagstuhl, Germany: Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020, 3:1—
3:14.

A. Saeed et al., “Memory Utilization-Based Dynamic
Bandwidth Regulation for Temporal Isolation in Multi-
Cores,” in 2022 IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2022,
pp. 133-145.

Arm, Quality of Service in ARM Systems: An
Overview, https://community.arm.com/arm-community-
blogs/b/soc-design-and-simulation-blog/ posts/quality-
of-service-in-arm-systems-an-overview Accessed:
2025-03-09.

P. Sohal et al., “E-WarP: A System-wide Framework
for Memory Bandwidth Profiling and Management,”

[21]

[25]

in 2020 IEEE Real-Time Systems Symposium (RTSS),
2020.

A. Serrano-Cases et al., “Leveraging Hardware QoS to
Control Contention in the Xilinx Zynq UltraScale+ MP-
SoC,” in 33rd Euromicro Conference on Real-Time Sys-
tems (ECRTS 2021), B. B. Brandenburg, Ed., ser. Leib-
niz International Proceedings in Informatics (LIPIcs),
vol. 196, Dagstuhl, Germany: Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik, 2021, 3:1-3:26.

P. Houdek, M. Sojka, and Z. Hanzélek, “Towards pre-
dictable execution model on ARM-based heterogeneous
platforms,” in 2017 IEEE 26th International Symposium
on Industrial Electronics (ISIE), 2017, pp. 1297-1302.
M. Zini et al., “Profiling and controlling I/O-related
memory contention in COTS heterogeneous platforms,”
Software: Practice and Experience, vol. 52, no. 5,
pp- 1095-1113, 2022.

Y. Zhou and D. Wentzlaff, “MITTS: Memory Inter-
Arrival Time Traffic Shaping,” in Proceedings of the
43rd International Symposium on Computer Architec-
ture, ser. ISCA ’16, Seoul, Republic of Korea: IEEE
Press, 2016, pp. 532-544.

F. Farshchi, Q. Huang, and H. Yun, “BRU: Bandwidth
Regulation Unit for Real-Time Multicore Processors,”
in 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2020, pp. 364-375.
J. Cardona et al., “Maximum-contention control unit
(MCCU): resource access count and contention time
enforcement,” in Design, Automation & Test in Europe
Conference & Exhibition, DATE 2019, Florence, Italy,
March 25-29, 2019, J. Teich and F. Fummi, Eds., IEEE,
2019, pp. 710-715.

N.-J. Wessman et al.,, “De-RISC: The first RISC-V
space-grade platform for safety-critical systems,” in
2021 IEEE Space Computing Conference (SCC), IEEE,
2021, pp. 17-26.

R. Mancuso et al., “Real-time cache management
framework for multi-core architectures,” in 2013 IEEE
19th Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), 2013, pp. 45-54.

X. Project, Xen 4.20 Support with Cache-Coloring,
https://wiki.xenproject.org/wiki/Xen_Project_4.20_Fea-
ture_List Accessed: 2025-03-09.

H. Yun et al., “PALLOC: DRAM bank-aware memory
allocator for performance isolation on multicore plat-
forms,” in 2014 IEEE 19th Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2014,

pp- 155-166.
Arm, Arm DynamIQ Shared
Unit Technical Reference Manual,

https://developer.arm.com/documentation/100453/
Accessed: 2025-03-09.
SYSGO GmbH,

https://www.sysgo.com.

PikeOS Hypervisor,

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://minervasys.tech/architect
https://minervasys.tech/architect
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/resource-director-technology.html
https://developer.arm.com/docs/dsu0026/
https://developer.arm.com/docs/dsu0026/
https://developer.arm.com/documentation/ihi0099/
https://developer.arm.com/documentation/ihi0099/

	Introduction
	Approaches to Memory Regulation
	Background on MemPol
	Industry Transfer
	Architect Features
	Architecture and Supported Platforms

	Example Use Case
	Conclusion

